Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 258–264 | Cite as

Electrosynthesis of Н2О2 from О2 in a Gas-Diffusion Electrode Based on Mesostructured Carbon CMK-3

  • V. L. Kornienko
  • G. A. Kolyagin
  • G. V. Kornienko
  • V. A. Parfenov
  • I. V. Ponomarenko


Mesostructured carbon CMK-3 (Carbon Mesostructured by KAIST) synthesized by the template method is studied as the electrocatalyst for electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode (GDE) in alkaline and acidic solutions. The texture characteristics of the original material and its mixture with hydrophobizer (polytetrafluoroethylene) are studied by the method of low-temperature nitrogen adsorption. The rate constants for hydrogen peroxide decomposition on these materials in alkaline and acidic solutions are calculated. Kinetic parameters of oxygen reduction in alkaline and acidic solutions are determined as well as the capacitance of gas-diffusion electrodes based on mesocarbon. The selectivity of the electrocatalyst is estimated by finding the current fracture γ consumed in oxygen reduction to hydrogen peroxide. Data on the kinetics of hydrogen peroxide accumulation during electrosynthesis of Н2О2 from О2 are obtained. The acidic solution of hydrogen peroxide with the concentration more than 3 M is obtained with the current efficiency higher than 80%.


electrosynthesis gas-diffusion electrode template synthesis mesostructured carbon hydrogen peroxide electrocatalyst double layer capacitance current efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochem., 2014, vol. 50, p. 419CrossRefGoogle Scholar
  2. 2.
    Li, H., Xi, H., Zhu, S., and Wang, R., Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon, Microporous Mesoporous Mater., 2006, vol. 96, p. 357.CrossRefGoogle Scholar
  3. 3.
    Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., Yan, Z.F., and Cheng, H.M., Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, vol. 44, p. 216.CrossRefGoogle Scholar
  4. 4.
    Lei, Z., Bai, D., and Zhao, X.S., Improving the electro capacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping, Microporous Mesoporous Mater., 2012, vol. 147, p. 86.CrossRefGoogle Scholar
  5. 5.
    Ponomarenko, I.V., Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of mesostructured electrode materials for electrochemical capacitors, Russ. J. Electrochem., 2015, vol. 51, p. 764.CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Tao, H., Jiang, Y., Jiao Z., Wu, M., and Zhao, B., Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries, J. Power Sources., 2010, vol. 195, p. 2950.CrossRefGoogle Scholar
  7. 7.
    Huwe, H. and Froba, M., Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3, Carbon, 2007, vol. 45, p. 304.CrossRefGoogle Scholar
  8. 8.
    Prasad, K.R.S., Dhawale, D.S., Joseph, S., Anand, C., Wahab, M.A., Mano, A., Sathish, C.I., Balasubramanian, V.V., Sivakumar, T., and Vinu, A., Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application, Microporous Mesoporous Mater., 2013, vol. 172, p. 77.CrossRefGoogle Scholar
  9. 9.
    Kawase, T. and Yoshitake, H., Cathodes comprising Li2MnSiO4 nanoparticles dispersed in the mesoporous carbon frameworks, CMK-3 and CMK-8, Microporous Mesoporous Mater., 2012, vol. 155, p. 99.CrossRefGoogle Scholar
  10. 10.
    Fang, B., Kim, J.H., Kim, M., and Yu, J.-S., Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell, Chem. Mater., 2009, vol. 21, p. 789.CrossRefGoogle Scholar
  11. 11.
    Bhagiyalakshmi, M., Lee, J.Y., and Jang, H. T., Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption, Int. J. Greenhouse Gas Control, 2010, vol. 4, p. 51.CrossRefGoogle Scholar
  12. 12.
    Park, J., Nabae, Y., Hayakawa, T., and Kakimoto M.-a., Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon, ACS Catal., 2014, vol. 4, p. 3749.CrossRefGoogle Scholar
  13. 13.
    Haschéa, F., Oezaslan, M., Strasser, P., and Fellinger, T.-P., Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst, J. Energy Chem., 2016, vol. 25, p. 251.CrossRefGoogle Scholar
  14. 14.
    Shenga, X., Daemsa, N., Geboesc, B., Kurttepelie, M., Balse, S., Breugelmansc, T., Hubinc, A., Vankelecom, I.F.J., and Pescarmona. P.P., N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2, Appl. Catal. B, 2015, vol. 176–177, p. 212.CrossRefGoogle Scholar
  15. 15.
    Perazzolo, V., Durante, C., and Gennaro. A., Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment, J. Electroanal. Chem., 2016, vol. 782, p. 264.CrossRefGoogle Scholar
  16. 16.
    Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., in Elektrosintez v gidrofobizirovannykh elektrodakh (Electrosynthesis in Hydrophobized Electrodes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2011.Google Scholar
  17. 17.
    Kolyagin, G.A. and Kornienko, V.L., Elektrosintez peroksida vodoroda v gazodiffuzionnom elektrode: Dostizheniya i perspektivy (Electrochemical Synthesis of Hydrogen Peroxide in a Gas-Diffusion Electrode: Achievements and Prospects), Lambert Acad., 2011.Google Scholar
  18. 18.
    Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, London: Oxford University, 1998.Google Scholar
  19. 19.
    Noyori, R., Pursuing practical elegance in chemical synthesis, Chem. Commun., 2005, no. 14, p. 1807.CrossRefGoogle Scholar
  20. 20.
    Schumb, W.C., Satterfield, C.N., and Wentworth, R.L., Hydrogen Peroxide, New York: Reinhold, 1955; translated into Russian.Google Scholar
  21. 21.
    Khimiya i tekhnologiya perekisi vodoroda (Chemistry and Technology of Hydrogen Peroxide), Seryshev, G.A., Ed., Leningrad: Khimiya, 1984.Google Scholar
  22. 22.
    Pletcher, D., Indirect oxidations using electrogenerated hydrogen peroxide, Acta Chem. Scand., 1999, vol. 53, p. 745.CrossRefGoogle Scholar
  23. 23.
    Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Chaenko, N.V., Kosheleva, A.M., Kenova, T.A., and Vasil’eva I.S., Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: Achievements and prospects, Russ. J. Appl. Chem., 2014, vol. 87, p. 1.CrossRefGoogle Scholar
  24. 24.
    Berl, B.E., A new cathodic process for the production H2O2, Trans. Electrochem. Soc., 1939, vol. 76, p. 359.CrossRefGoogle Scholar
  25. 25.
    Fioshin, M.Y., Uspekhi v oblasti electrosinteza neorganicheskih soedinenii (Advances in Electrosynthesis of Inorganic Compounds), Moscow: Khimiya, 1974.Google Scholar
  26. 26.
    Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfehov, B.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 983.CrossRefGoogle Scholar
  27. 27.
    Vert, Zh. L. and Pavlova, V. F., The effect of temperature on the process of electroreduction of oxygen on hydrophobized electrode in 1 M NaOH, Zh. Prikl. Khim., 1988, vol. 61, p.1148.Google Scholar
  28. 28.
    Shinae, J., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure, J. Amer. Chem. Soc., 2000, vol. 122, p. 10712.CrossRefGoogle Scholar
  29. 29.
    Ryoo, R., Joo, S.H., Kruk, M., and Jaroniec, M., Ordered mesoporous carbons, Adv. Mater., 2001, vol. 13, no. 9, p. 677.CrossRefGoogle Scholar
  30. 30.
    Zhao, D.Y, Huo, Q.S, Feng, J.L, Chmelka, B.F, and Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Amer. Chem. Soc., 1998, vol. 120, no. 24, p. 6024.CrossRefGoogle Scholar
  31. 31.
    Zakharkin, G.I., Tarasevich, M.R., and Burshtein, R.H., Studying oxygen and hydrogen peroxide reactions by using O18. IV. Mechanism of hydrogen peroxide decomposition on various carbon materials, Elektrokhimiya, 1974, vol. 10, p. 1811.Google Scholar
  32. 32.
    Alekseev, V.I., Kolichestvennyi analiz (Quantitative Analysis), Moscow: Khimiya, 1972.Google Scholar
  33. 33.
    Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., and Parfenov, B.A., Electrosynthesis of H2O2 from O2 in gas-diffusion electrodes on the basis of carbon black CN600. Russ. J. Electrochem., 2017, vol. 53, in press.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. L. Kornienko
    • 1
  • G. A. Kolyagin
    • 1
  • G. V. Kornienko
    • 1
    • 2
  • V. A. Parfenov
    • 1
  • I. V. Ponomarenko
    • 1
  1. 1.Institute of Chemistry and Chemical Technology, Krasnoyarsk Research Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Reshetnev Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations