Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 243–250 | Cite as

Impedance Study of the Conductivity of Solid Oxide Electrolyte Films SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ

  • L. A. Dunyushkina
Article
  • 22 Downloads

Abstract

Information on the across-plane conductivity of films of solid-oxide electrolytes SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ deposited on ion-conducting supports is acquired by the impedance method. It is shown that the support/film interface and the intergrain boundaries considerably affect the across-plane charge transfer in the film. The effect of the crystallographic orientation of the YSZ support on the microstructure and conductivity of the CaZr0.9Y0.1O3–δ electrolyte film is demonstrated.

Keywords

thin films calcium zirconate strontium zirconate YSZ solid-oxide electrolyte film conductivity film microstructure grain size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang, J. and Hertz, J.L., On the variability of reported ionic conductivity in nanoscale YSZ thin films, J. Electroceram., 2014, vol. 32, p. 37.CrossRefGoogle Scholar
  2. 2.
    Kosacki, I., Suzuki, T., Petrovsky, V., and Anderson, H.U., Electrical conductivity of nanocrystalline ceria and zirconia thin films, Solid State Ionics, 2000, vols. 136–137, p. 1225.CrossRefGoogle Scholar
  3. 3.
    Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., and Lowndes, D.H., Surface/interface-related conductivity in nanometer thick YSZ films, Electrochem. Solid-State Lett., 2004, vol. 7, p. A459.CrossRefGoogle Scholar
  4. 4.
    Guo, X., Vasco, E., Mi, S.B., Szot, K., Wachsman, E., and Waser, R., Ionic conduction in Zirconia films of nanometer thickness, Acta Mater., 2005, vol. 53, p. 5161.CrossRefGoogle Scholar
  5. 5.
    Frenkel’, Ya.I., Sobranie izbrannykh trudov, Tom 3 (Collection of Selected Works, Vol. 3), Moscow: Akad. Nauk SSSR, 1959.Google Scholar
  6. 6.
    Kliewer, K.L. and Koehler, J.S., Space charge in ionic crystals. I. General approach with application to NaCl, Phys. Rev., 1965, vol. 140, p. 1226.CrossRefGoogle Scholar
  7. 7.
    Chebotin, V.N. and Perfil’ev, V.N., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Metallurgiya, 1978.Google Scholar
  8. 8.
    Kim, S. and Maier, J., On the conductivity mechanism of nanocrystalline ceria, J. Electrochem. Soc., 2002, vol. 149, p. J73.CrossRefGoogle Scholar
  9. 9.
    Hwang, S. L. and Chen, I.-W., Grain size control of tetragonal zirconia polycrystals using the space charge concept, J. Amer. Ceram. Soc., 1990, vol. 73, p. 3269.CrossRefGoogle Scholar
  10. 10.
    Blom, D. A. and Chiang, Y.-M., Interfacial segregation in ionic conductors: ceria, Mater. Res. Soc. Symp. Proc., 1997, vol. 458, p. 127.CrossRefGoogle Scholar
  11. 11.
    Guo, X. and Ding, Y., Grain boundary space charge effect in zirconia. Experimental evidence, J. Electrochem. Soc., 2004, vol. 151, p. J1.CrossRefGoogle Scholar
  12. 12.
    Iguchi, F., Sata, N., and Yugami, H., Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC, J. Mater. Chem., 2010, vol. 20, p. 6265.CrossRefGoogle Scholar
  13. 13.
    Shirpour, M., Merkle, R., and Maier, J., Evidence for space charge effect in Y-doped BaZrO3 from reduction experiment, Solid State Ionics, 2012, vol. 225, p. 304.CrossRefGoogle Scholar
  14. 14.
    Kim, H.-R., Kim, J.-C., Lee, K.-R., Ji, H.-I., Lee, H.-W., Lee, J.-H., and Son, J.-W., “Illusional” nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 6133.CrossRefGoogle Scholar
  15. 15.
    Tunneling Phenomena in Solids, Burstein, S. and Lundquist, S. (Eds.), New York: Plenum, 1969; translated into Russian.Google Scholar
  16. 16.
    Dunyushkina, L.A., Vshivkova, A.I., Pankratov, A.A., Antonov, B.D., and Gorelov, V.P., Yttria stabilized zirconia solid electrolyte surface modification with ZrO2, Y2O3, and ZrO2 + 9 mol % Y2O3 films, Russ. J. Electrochem., 2010, vol. 46, p. 767.]CrossRefGoogle Scholar
  17. 17.
    Dunyushkina, L.A., Plaksin, S.V., Pankratov, A.A., Kuzmina, L.A., Kuimov, V.M., and Gorelov, V.P., Synthesis and properties of CaZrO3 films on YSZ electrolyte surface, Russ. J. Electrochem., 2011, vol. 47, p. 1274.CrossRefGoogle Scholar
  18. 18.
    Dunyushkina, L.A., Smirnov, S.V., Plaksin, S.V., Kuimov, V.M., and Gorelov, V.P., The across-plane conductivity and microstructure of SrZr0.95Y0.05O3–δ thin films, Ionics, 2013, vol. 19, p. 1715.CrossRefGoogle Scholar
  19. 19.
    Dunyushkina, L.A., Smirnov, S.V., Kuimov, V.M., and Gorelov, V.P., Electrical conductivity of CaZr0.9Y0.1O3–δ films deposited from liquid solutions, Int. J. Hydrogen Energy, 2014, vol. 39, p. 18385.CrossRefGoogle Scholar
  20. 20.
    Gorelov, V.P., Balakireva, V.B., and Kuzmin, A.V., Partial conductivities in perovskites CaZr1–xScxO3–α (x = 0.03–0.20) in an oxidation atmosphere, Phys. Solid State, 2016, vol. 58, p. 12.CrossRefGoogle Scholar
  21. 21.
    Bao, J., Okuyama, Y., Shi, Z., Fukatsu, N., and Kurita, N., Properties of electrical conductivity in Y-doped CaZrO3, Mater. Trans., 2012, vol. 53, p. 973.CrossRefGoogle Scholar
  22. 22.
    Gorelov, V.P., Balakireva, V.B., Kuzmin, A.V., and Plaksin S.V., Electrical conductivity of CaZr1–xScxO3–α (x = 0.01–0.20) in dry and humid air, Inorg. Mater., 2014, vol. 50, p. 495.CrossRefGoogle Scholar
  23. 23.
    Huang, P. and Petric, A., Electrical conduction of yttrium-doped strontium zirconate, J. Mater. Chem., 1995, vol. 5 (1), p. 53.CrossRefGoogle Scholar
  24. 24.
    Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Proton conduction in Al-doped CaZrO3, Electrochim. Acta, 2011, vol. 56, p. 1062.CrossRefGoogle Scholar
  25. 25.
    Hwang, S. and Choi, G., The effect of cation nonstoichiometry on the electrical conductivity of acceptordoped CaZrO3, Solid State Ionics, 2006, vol. 177, p. 3099.CrossRefGoogle Scholar
  26. 26.
    Irvine, J., Sinclair, D., and West, A., Electroceramics: characterisation by ac impedance spectroscopy, Adv. Mater., 1990, vol. 2, p. 132.CrossRefGoogle Scholar
  27. 27.
    Higuchi, T., Tsukamoto, T., Sata, N., Hiramoto, K., Ishigame, M., and Shin, S. Protonic conduction in the single crystals of SrZr0.95M0.05O3 (M = Y, Sc, Yb, Er), Jpn. J. Appl. Phys., 2001, vol. 40, p. 4162.CrossRefGoogle Scholar
  28. 28.
    Guo, X. and Maier, J., Grain boundary blocking effect in zirconia: a Schottky barrier analysis, J. Electrochem. Soc., 2001, vol. 148, p. E121.CrossRefGoogle Scholar
  29. 29.
    Dudek, M. and Bućko, M., Ceramic electrolytes based on (Ba1–xCax)(Zr0.9Y0.1)O3 solid solution, J. Solid State Electrochem., 2010, vol. 14, p. 565.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of High Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations