Skip to main content
Log in

Impedance Study of the Conductivity of Solid Oxide Electrolyte Films SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Information on the across-plane conductivity of films of solid-oxide electrolytes SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ deposited on ion-conducting supports is acquired by the impedance method. It is shown that the support/film interface and the intergrain boundaries considerably affect the across-plane charge transfer in the film. The effect of the crystallographic orientation of the YSZ support on the microstructure and conductivity of the CaZr0.9Y0.1O3–δ electrolyte film is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, J. and Hertz, J.L., On the variability of reported ionic conductivity in nanoscale YSZ thin films, J. Electroceram., 2014, vol. 32, p. 37.

    Article  CAS  Google Scholar 

  2. Kosacki, I., Suzuki, T., Petrovsky, V., and Anderson, H.U., Electrical conductivity of nanocrystalline ceria and zirconia thin films, Solid State Ionics, 2000, vols. 136–137, p. 1225.

    Article  Google Scholar 

  3. Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., and Lowndes, D.H., Surface/interface-related conductivity in nanometer thick YSZ films, Electrochem. Solid-State Lett., 2004, vol. 7, p. A459.

    Article  CAS  Google Scholar 

  4. Guo, X., Vasco, E., Mi, S.B., Szot, K., Wachsman, E., and Waser, R., Ionic conduction in Zirconia films of nanometer thickness, Acta Mater., 2005, vol. 53, p. 5161.

    Article  CAS  Google Scholar 

  5. Frenkel’, Ya.I., Sobranie izbrannykh trudov, Tom 3 (Collection of Selected Works, Vol. 3), Moscow: Akad. Nauk SSSR, 1959.

    Google Scholar 

  6. Kliewer, K.L. and Koehler, J.S., Space charge in ionic crystals. I. General approach with application to NaCl, Phys. Rev., 1965, vol. 140, p. 1226.

    Article  CAS  Google Scholar 

  7. Chebotin, V.N. and Perfil’ev, V.N., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Metallurgiya, 1978.

    Google Scholar 

  8. Kim, S. and Maier, J., On the conductivity mechanism of nanocrystalline ceria, J. Electrochem. Soc., 2002, vol. 149, p. J73.

    Article  CAS  Google Scholar 

  9. Hwang, S. L. and Chen, I.-W., Grain size control of tetragonal zirconia polycrystals using the space charge concept, J. Amer. Ceram. Soc., 1990, vol. 73, p. 3269.

    Article  CAS  Google Scholar 

  10. Blom, D. A. and Chiang, Y.-M., Interfacial segregation in ionic conductors: ceria, Mater. Res. Soc. Symp. Proc., 1997, vol. 458, p. 127.

    Article  CAS  Google Scholar 

  11. Guo, X. and Ding, Y., Grain boundary space charge effect in zirconia. Experimental evidence, J. Electrochem. Soc., 2004, vol. 151, p. J1.

    Article  CAS  Google Scholar 

  12. Iguchi, F., Sata, N., and Yugami, H., Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC, J. Mater. Chem., 2010, vol. 20, p. 6265.

    Article  CAS  Google Scholar 

  13. Shirpour, M., Merkle, R., and Maier, J., Evidence for space charge effect in Y-doped BaZrO3 from reduction experiment, Solid State Ionics, 2012, vol. 225, p. 304.

    Article  CAS  Google Scholar 

  14. Kim, H.-R., Kim, J.-C., Lee, K.-R., Ji, H.-I., Lee, H.-W., Lee, J.-H., and Son, J.-W., “Illusional” nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 6133.

    Article  CAS  Google Scholar 

  15. Tunneling Phenomena in Solids, Burstein, S. and Lundquist, S. (Eds.), New York: Plenum, 1969; translated into Russian.

  16. Dunyushkina, L.A., Vshivkova, A.I., Pankratov, A.A., Antonov, B.D., and Gorelov, V.P., Yttria stabilized zirconia solid electrolyte surface modification with ZrO2, Y2O3, and ZrO2 + 9 mol % Y2O3 films, Russ. J. Electrochem., 2010, vol. 46, p. 767.]

    Article  CAS  Google Scholar 

  17. Dunyushkina, L.A., Plaksin, S.V., Pankratov, A.A., Kuzmina, L.A., Kuimov, V.M., and Gorelov, V.P., Synthesis and properties of CaZrO3 films on YSZ electrolyte surface, Russ. J. Electrochem., 2011, vol. 47, p. 1274.

    Article  CAS  Google Scholar 

  18. Dunyushkina, L.A., Smirnov, S.V., Plaksin, S.V., Kuimov, V.M., and Gorelov, V.P., The across-plane conductivity and microstructure of SrZr0.95Y0.05O3–δ thin films, Ionics, 2013, vol. 19, p. 1715.

    Article  CAS  Google Scholar 

  19. Dunyushkina, L.A., Smirnov, S.V., Kuimov, V.M., and Gorelov, V.P., Electrical conductivity of CaZr0.9Y0.1O3–δ films deposited from liquid solutions, Int. J. Hydrogen Energy, 2014, vol. 39, p. 18385.

    Article  CAS  Google Scholar 

  20. Gorelov, V.P., Balakireva, V.B., and Kuzmin, A.V., Partial conductivities in perovskites CaZr1–xScxO3–α (x = 0.03–0.20) in an oxidation atmosphere, Phys. Solid State, 2016, vol. 58, p. 12.

    Article  CAS  Google Scholar 

  21. Bao, J., Okuyama, Y., Shi, Z., Fukatsu, N., and Kurita, N., Properties of electrical conductivity in Y-doped CaZrO3, Mater. Trans., 2012, vol. 53, p. 973.

    Article  CAS  Google Scholar 

  22. Gorelov, V.P., Balakireva, V.B., Kuzmin, A.V., and Plaksin S.V., Electrical conductivity of CaZr1–xScxO3–α (x = 0.01–0.20) in dry and humid air, Inorg. Mater., 2014, vol. 50, p. 495.

    Article  CAS  Google Scholar 

  23. Huang, P. and Petric, A., Electrical conduction of yttrium-doped strontium zirconate, J. Mater. Chem., 1995, vol. 5 (1), p. 53.

    Article  CAS  Google Scholar 

  24. Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Proton conduction in Al-doped CaZrO3, Electrochim. Acta, 2011, vol. 56, p. 1062.

    Article  CAS  Google Scholar 

  25. Hwang, S. and Choi, G., The effect of cation nonstoichiometry on the electrical conductivity of acceptordoped CaZrO3, Solid State Ionics, 2006, vol. 177, p. 3099.

    Article  CAS  Google Scholar 

  26. Irvine, J., Sinclair, D., and West, A., Electroceramics: characterisation by ac impedance spectroscopy, Adv. Mater., 1990, vol. 2, p. 132.

    Article  CAS  Google Scholar 

  27. Higuchi, T., Tsukamoto, T., Sata, N., Hiramoto, K., Ishigame, M., and Shin, S. Protonic conduction in the single crystals of SrZr0.95M0.05O3 (M = Y, Sc, Yb, Er), Jpn. J. Appl. Phys., 2001, vol. 40, p. 4162.

    Article  CAS  Google Scholar 

  28. Guo, X. and Maier, J., Grain boundary blocking effect in zirconia: a Schottky barrier analysis, J. Electrochem. Soc., 2001, vol. 148, p. E121.

    Article  CAS  Google Scholar 

  29. Dudek, M. and Bućko, M., Ceramic electrolytes based on (Ba1–xCax)(Zr0.9Y0.1)O3 solid solution, J. Solid State Electrochem., 2010, vol. 14, p. 565.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Dunyushkina.

Additional information

Original Russian Text © L.A. Dunyushkina, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 279–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunyushkina, L.A. Impedance Study of the Conductivity of Solid Oxide Electrolyte Films SrZr0.95Y0.05O3–δ and CaZr0.9Y0.1O3–δ. Russ J Electrochem 54, 243–250 (2018). https://doi.org/10.1134/S1023193518030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030047

Keywords

Navigation