Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 318–323 | Cite as

New Composite Proton-Conducting Membranes Based on Nafion and Cross-Linked Sulfonated Polystyrene

  • A. A. Arslanova
  • E. A. Sanginov
  • Yu. A. Dobrovol’skii
Short Communications


New composite membranes based on commercial perfluorinated Nafion-115 membrane and cross-linked sulfonated polystyrene were synthesized and investigated. The membranes were prepared by radical polymerization of styrene in the presence of a cross-linking agent divinylbenzene in Nafion polymer matrix and subsequent sulfonation of formed polystyrene. The membranes containing approximately 5 and 10 wt % of cross-linked polystyrene with ion-exchange capacity of 1.1 to 1.3 mg-eq/g were obtained. Modification with sulfonated polystyrene leads to an increase in the moisture content and proton conductivity of membranes in the humidity range of 15 to 100 RH.


proton-conducting membranes Nafion composites sulfonated polystyrene proton conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Souzy, R. and Ameduri, B., Functional fluoropolymers for fuel cell membranes, Prog. Polym. Sci., 2005, vol. 30, no. 6, p. 644.CrossRefGoogle Scholar
  2. 2.
    Ivanchev, S.S., and Myakin, S.V., Polymer membranes for fuel cells: manufacture, structure, modification, properties, Russ. Chem. Rev., 2010, vol. 79, no. 2, p. 101.CrossRefGoogle Scholar
  3. 3.
    Zhang, H.W. and Shen, P.K., Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev., 2012, vol. 112, no. 5, p. 2780.CrossRefGoogle Scholar
  4. 4.
    Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, p. 191.CrossRefGoogle Scholar
  5. 5.
    Ahmad, H., Kamarudin, S.K., Hasran, U.A., and Daud, W.R.W., Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrogen Energy, 2010, vol. 35, p. 2160.CrossRefGoogle Scholar
  6. 6.
    Laberty-Robert, C., Valle, K., Pereira, F., and Sanchez, C., Design and properties of functional hybrid organic-inorganic membranes for fuel cells, Chem. Soc. Rev., 2011, vol. 40, p. 961.CrossRefGoogle Scholar
  7. 7.
    Thiam, H.S., Daud, W.R.W., Kamarudin, S.K., Mohammad, A.B., Kadhum, A.A.H., Loh, K.S., and Majlan, E.H., Overview on nanostructured membrane in fuel cell applications, Int. J. Hydrogen Energy, 2011, vol. 36, p. 3187.CrossRefGoogle Scholar
  8. 8.
    Mishra, A.K., Bose, S., Kuila, T., Kim, N.H., and Lee, J.H., Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci., 2012, vol. 37, p. 842.CrossRefGoogle Scholar
  9. 9.
    Kim, D.J., Jo, M.J., and Nam, S.Y., A review of polymer- nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 2015, vol. 21, p. 36.CrossRefGoogle Scholar
  10. 10.
    Yaroslavtsev, A.B., Composite materials with ionic conductivity: from inorganic composites to hybrid membranes, Russ. Chem. Rev., 2009, vol. 78, no. 11, p. 1013.CrossRefGoogle Scholar
  11. 11.
    Yaroslavtsev, A.B., Perfluorinated ion exchange membranes, Polym. Sci., Ser. A., 2013, vol. 55, p. 674.CrossRefGoogle Scholar
  12. 12.
    Neburchilov, V., Martin, J., Wang, H., and Zhang, J., A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 2007, vol. 169, p. 221.CrossRefGoogle Scholar
  13. 13.
    Song, M.K., Kim, Y.T., Fenton, J.M., Kunz, H.R., and Rhee, H.W., Chemically-modified Nafion®/ poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells, J. Power Sources, 2003, vol. 117, p. 14.CrossRefGoogle Scholar
  14. 14.
    Wycisk, R., Chisholm, J., Lee, J., Lin, J., and Pintauro, P.N., Direct methanol fuel cell membranes from Nafion—polybenzimidazole blends, J. Power Sources, 2005, vol. 163, p. 9.CrossRefGoogle Scholar
  15. 15.
    DeLuca, N.W. and Elabd, Y.A., Nafion®/poly(vinyl alcohol) blends: effect of composition and annealing temperature on transport properties, J. Membrane Sci., 2006, vol. 282, p. 217.CrossRefGoogle Scholar
  16. 16.
    DeLuca, N.W. and Elabd, Y.A., Direct methanol fuel cell performance of Nafion®/poly(vinyl alcohol) blend membranes, J. Power Sources, 2006, vol. 163, p. 386.CrossRefGoogle Scholar
  17. 17.
    Florjanczyk, Z., Wielgus-Barry, E., and Poltarzewski, Z., Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics, 2001, vol. 145, p. 119.CrossRefGoogle Scholar
  18. 18.
    Bae, B., Ha, H.Y., and Kim, D., Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells, J. Membrane Sci., 2006, vol. 276, p. 51.CrossRefGoogle Scholar
  19. 19.
    Kundu, P.P., Kim, B.T., Ahn, J.E., Han, H.S., and Shul, Y.G., Formation and evaluation of semi-IPN of Nafion 117 membrane for direct methanol fuel cell. 1. Crosslinked sulfonated polystyrene in the pores of Nafion 117, J. Power Sources, 2007, vol. 171, p. 86.CrossRefGoogle Scholar
  20. 20.
    Sanginov, E.A., Evshchik, E.Yu., Kayumov, R.R., and Dobrovol’skii, Yu.A., Lithium-ion conductivity of the Nafion membrane swollen in organic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 986.CrossRefGoogle Scholar
  21. 21.
    Bartholin, M., Boissier, G., and Dubois, J., Styrene–divinylbenzene copolymers. 3. Revisited IRanalysis, Makromol. Chem., 1981, vol. 182, p. 2075.CrossRefGoogle Scholar
  22. 22.
    Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.Ch., Sanginov, E.A., and Dobrovol’skii Yu.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, p. 589.CrossRefGoogle Scholar
  23. 23.
    Zundel, G., Hydrate structures, intermolecular interactions and proton conducting mechanism in polyelectrolyte membranes—infrared results, J. Membrane Sci., 1982, vol. 11, p. 249.CrossRefGoogle Scholar
  24. 24.
    Safronova, E.Yu., Golubenko, D.V., Shevlyakova, N.V., D’yakova, M.G., Tverskoi, V.A., Dammak, L., Grande, D., and Yaroslavtsev, A.B., New cation exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems, J. Membrane Sci., 2016, vol. 515, p. 196.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Arslanova
    • 1
    • 2
  • E. A. Sanginov
    • 1
  • Yu. A. Dobrovol’skii
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of Fundamental Physical and Chemical EngineeringMoscow State UniversityMoscowRussia

Personalised recommendations