Skip to main content
Log in

New Composite Proton-Conducting Membranes Based on Nafion and Cross-Linked Sulfonated Polystyrene

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

New composite membranes based on commercial perfluorinated Nafion-115 membrane and cross-linked sulfonated polystyrene were synthesized and investigated. The membranes were prepared by radical polymerization of styrene in the presence of a cross-linking agent divinylbenzene in Nafion polymer matrix and subsequent sulfonation of formed polystyrene. The membranes containing approximately 5 and 10 wt % of cross-linked polystyrene with ion-exchange capacity of 1.1 to 1.3 mg-eq/g were obtained. Modification with sulfonated polystyrene leads to an increase in the moisture content and proton conductivity of membranes in the humidity range of 15 to 100 RH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Souzy, R. and Ameduri, B., Functional fluoropolymers for fuel cell membranes, Prog. Polym. Sci., 2005, vol. 30, no. 6, p. 644.

    Article  CAS  Google Scholar 

  2. Ivanchev, S.S., and Myakin, S.V., Polymer membranes for fuel cells: manufacture, structure, modification, properties, Russ. Chem. Rev., 2010, vol. 79, no. 2, p. 101.

    Article  CAS  Google Scholar 

  3. Zhang, H.W. and Shen, P.K., Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev., 2012, vol. 112, no. 5, p. 2780.

    Article  CAS  Google Scholar 

  4. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, p. 191.

    Article  CAS  Google Scholar 

  5. Ahmad, H., Kamarudin, S.K., Hasran, U.A., and Daud, W.R.W., Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrogen Energy, 2010, vol. 35, p. 2160.

    Article  CAS  Google Scholar 

  6. Laberty-Robert, C., Valle, K., Pereira, F., and Sanchez, C., Design and properties of functional hybrid organic-inorganic membranes for fuel cells, Chem. Soc. Rev., 2011, vol. 40, p. 961.

    Article  CAS  Google Scholar 

  7. Thiam, H.S., Daud, W.R.W., Kamarudin, S.K., Mohammad, A.B., Kadhum, A.A.H., Loh, K.S., and Majlan, E.H., Overview on nanostructured membrane in fuel cell applications, Int. J. Hydrogen Energy, 2011, vol. 36, p. 3187.

    Article  CAS  Google Scholar 

  8. Mishra, A.K., Bose, S., Kuila, T., Kim, N.H., and Lee, J.H., Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci., 2012, vol. 37, p. 842.

    Article  CAS  Google Scholar 

  9. Kim, D.J., Jo, M.J., and Nam, S.Y., A review of polymer- nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 2015, vol. 21, p. 36.

    Article  CAS  Google Scholar 

  10. Yaroslavtsev, A.B., Composite materials with ionic conductivity: from inorganic composites to hybrid membranes, Russ. Chem. Rev., 2009, vol. 78, no. 11, p. 1013.

    Article  CAS  Google Scholar 

  11. Yaroslavtsev, A.B., Perfluorinated ion exchange membranes, Polym. Sci., Ser. A., 2013, vol. 55, p. 674.

    Article  CAS  Google Scholar 

  12. Neburchilov, V., Martin, J., Wang, H., and Zhang, J., A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 2007, vol. 169, p. 221.

    Article  CAS  Google Scholar 

  13. Song, M.K., Kim, Y.T., Fenton, J.M., Kunz, H.R., and Rhee, H.W., Chemically-modified Nafion®/ poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells, J. Power Sources, 2003, vol. 117, p. 14.

    Article  CAS  Google Scholar 

  14. Wycisk, R., Chisholm, J., Lee, J., Lin, J., and Pintauro, P.N., Direct methanol fuel cell membranes from Nafion—polybenzimidazole blends, J. Power Sources, 2005, vol. 163, p. 9.

    Article  Google Scholar 

  15. DeLuca, N.W. and Elabd, Y.A., Nafion®/poly(vinyl alcohol) blends: effect of composition and annealing temperature on transport properties, J. Membrane Sci., 2006, vol. 282, p. 217.

    Article  CAS  Google Scholar 

  16. DeLuca, N.W. and Elabd, Y.A., Direct methanol fuel cell performance of Nafion®/poly(vinyl alcohol) blend membranes, J. Power Sources, 2006, vol. 163, p. 386.

    Article  CAS  Google Scholar 

  17. Florjanczyk, Z., Wielgus-Barry, E., and Poltarzewski, Z., Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics, 2001, vol. 145, p. 119.

    Article  CAS  Google Scholar 

  18. Bae, B., Ha, H.Y., and Kim, D., Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells, J. Membrane Sci., 2006, vol. 276, p. 51.

    Article  CAS  Google Scholar 

  19. Kundu, P.P., Kim, B.T., Ahn, J.E., Han, H.S., and Shul, Y.G., Formation and evaluation of semi-IPN of Nafion 117 membrane for direct methanol fuel cell. 1. Crosslinked sulfonated polystyrene in the pores of Nafion 117, J. Power Sources, 2007, vol. 171, p. 86.

    Article  CAS  Google Scholar 

  20. Sanginov, E.A., Evshchik, E.Yu., Kayumov, R.R., and Dobrovol’skii, Yu.A., Lithium-ion conductivity of the Nafion membrane swollen in organic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 986.

    Article  CAS  Google Scholar 

  21. Bartholin, M., Boissier, G., and Dubois, J., Styrene–divinylbenzene copolymers. 3. Revisited IRanalysis, Makromol. Chem., 1981, vol. 182, p. 2075.

    Article  CAS  Google Scholar 

  22. Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.Ch., Sanginov, E.A., and Dobrovol’skii Yu.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, p. 589.

    Article  CAS  Google Scholar 

  23. Zundel, G., Hydrate structures, intermolecular interactions and proton conducting mechanism in polyelectrolyte membranes—infrared results, J. Membrane Sci., 1982, vol. 11, p. 249.

    Article  CAS  Google Scholar 

  24. Safronova, E.Yu., Golubenko, D.V., Shevlyakova, N.V., D’yakova, M.G., Tverskoi, V.A., Dammak, L., Grande, D., and Yaroslavtsev, A.B., New cation exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems, J. Membrane Sci., 2016, vol. 515, p. 196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sanginov.

Additional information

Original Russian Text © A.A. Arslanova, E.A. Sanginov, Yu.A. Dobrovol’skii, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 368–374.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanova, A.A., Sanginov, E.A. & Dobrovol’skii, Y.A. New Composite Proton-Conducting Membranes Based on Nafion and Cross-Linked Sulfonated Polystyrene. Russ J Electrochem 54, 318–323 (2018). https://doi.org/10.1134/S1023193518030035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030035

Keywords

Navigation