Skip to main content
Log in

Anode with the Active Layer for Electrosynthesizing Ozone in a System with Solid Polymer Electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis of catalytic coatings on porous titanium electrodes by the method of magnetron sputtering is considered. The content of dopant ions Fe3+ and F is optimized as regards the activity and stability of the PbO2 catalyst in the reaction of ozone electrogeneration as well as the current efficiency with respect to ozone. It is shown that the best characteristics of the electrochemical ozone generator are observed on the PbO2 catalyst doped with Fe3+ and F ions in the amount of 3–4 and 1–2 at %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Swaminathan, M., Muruganandham, M., and Sillanpaa, M., Advanced oxidation processes for wastewater treatment, Int. J. Photoenergy, 2013, Article ID683682, http://dx.doi.org/. doi 10.1155/2013/683682

    Google Scholar 

  2. Grigor'ev, S.A., Pushkarev, A.S., Pushkareva, I.V., and Bessarabov, D.G., Electrochemical treatment of water in a system with solid polymer electrolyte, Voda: Khim. Ekologiya, 2016, no. 3, p. 85.

    Google Scholar 

  3. Pushkarev, A.S., Pushkareva, I.V., and Grigoriev, S.A., Electrochemical generation of ozone in a system with a solid polymer electrolyte, Russ. J. Appl. Chem., 2016, vol. 89, no. 7, p. 1054.

    Article  CAS  Google Scholar 

  4. Grimm, J., Bessarabov, D., and Sanderson, R., Review of electro-assisted methods for water purification, Desalination, 1998, vol. 115, p. 285.

    Article  CAS  Google Scholar 

  5. Bicknell, D.L. and Jain, R.K., Ozone disinfection of drinking water—technology transfer and policy issues, Environ. Eng. Policy, 2002, vol. 3, p. 55.

    Article  Google Scholar 

  6. Grigor’ev, S.A., Grigor’ev, A.S., Kuleshov, N.V., Fateev, V.N., and Kuleshov, V.N., Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems, Therm. Eng., 2015, vol. 62, no. 2. p. 81.

    Article  Google Scholar 

  7. Fateev, V.N., Grigor’ev, S.A., Maruseva, I.V., Baranov, I.E., and Dzhus’, K.A., Membrane electrolysis for renewable energetics, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konf. “Teoriya i praktika sovremennykh elektrokhimicheskikh proizvodstv”, (Collection of Papers of the III International Scientific-Practical Conference “Theory and Practice of Modern Electrochemical Industries”), St. Petersburg, 2014, p. 5.

    Google Scholar 

  8. Bessarabov, D.G., Electrochemical generation of highconcentration ozone for water treatment, The WISA 2000 Biennial Conference, 2000, Sun City, South Africa.

    Google Scholar 

  9. Wang, J., Li, X., Guo, L., and Luo, X., Effect of surface morphology of lead dioxide particles on their ozone generating performance, Appl. Surf. Sci., 2008, vol. 254, p. 6666.

    Article  CAS  Google Scholar 

  10. Amadelli, R. and Velichenko, A.B., Lead dioxide electrodes for high potential anodic processes, J. Serb. Chem. Soc., 2001, vol. 66, p. 835.

    CAS  Google Scholar 

  11. Amadelli, R., Armelao, L., Velichenko, A.B., Nikolenko, N.V., Girenko, D.V., Kovalyov, S.V., and Danilov, F.I., Oxygen and ozone evolution at fluoride modified lead dioxide electrodes, Electrochim. Acta, 1999, vol. 45, p. 713.

    Article  CAS  Google Scholar 

  12. Andrade, L.S, Ruotolo, L.A.M., Rocha-Filho, R.C., Bocchi, N., Biaggio, S.R., Iniesta, J., Vicente Garcia-Garcia, V., and Montiel, V., On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater, Chemosphere, 2007, vol. 66, p. 2035.

    Article  CAS  Google Scholar 

  13. Tong, S., Zhang, T., and Ma, C., Oxygen evolution behavior of PTFE–F––PbO2 electrode in H2SO4 solution, Chin. J. Chem. Eng., 2008, vol. 16, p. 885.

    Article  CAS  Google Scholar 

  14. Simond, O. and Comninellis, Ch., Anodic oxidation of organics on Ti/IrO2 anodes using Nafion® as electrolyte, Electrochim. Acta, 1997, vol. 42. p. 2013.

    Article  CAS  Google Scholar 

  15. Rajab, M., Heim, C., Letzel, T., Drewes, J.E., and Helmreich, B., Electrochemical disinfection using boron-doped diamond electrode—The synergetic effects of in situ ozone and free chlorine generation, Chemosphere, 2015, vol. 121, p. 47.

    Article  CAS  Google Scholar 

  16. Kraft, A., Stadelmann, M., Wunsche, M., and Blaschke, M., Electrochemical destruction of organic substances in deionized water using diamond anodes and a solid polymer electrolyte, Electrochem. Commun., 2006, vol. 8, p. 155.

    Article  CAS  Google Scholar 

  17. Honda, Y., Ivandini, T.A., Watanabe, T., Murata, K., and Einaga, Y., An electrolyte-free system for ozone generation using heavily boron-doped diamond electrodes, Diamond Relat. Mater., 2013, p. 40, p. 7.

    Article  CAS  Google Scholar 

  18. Awad, M.I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., and Ohsaka, T., Ozone electrogeneration at a high current efficiency using a tantalum oxide–platinum composite electrode, Electrochem. Commun., 2006, vol. 8, p. 1263.

    Article  CAS  Google Scholar 

  19. Kitsuka, K., Kaneda, K., Ikematsu, M., Iseki, M., Mushiake, K., and Ohsaka, T., Ex situ and in situ characterization studies of spin-coated TiO2 film electrodes for the electrochemical ozone production process, Electrochim. Acta, 2009, vol. 55, p. 31.

    Article  CAS  Google Scholar 

  20. Mohammad, A.M., Kitsuka, K., Abdullah, A.M., Awad, M.I., Okajima, T., Kaneda, K., Ikematsu, M., and Ohsaka, T., Development of spin-coated Si/TiOx/Pt/TiOx electrodes for the electrochemical ozone production, Appl. Surf. Sci., 2009, vol. 255, p. 8458.

    Article  CAS  Google Scholar 

  21. Zakaria, K. and Christensen, P.A., The use of Ni/Sb–SnO2-based membrane electrode assembly for electrochemical generation of ozone and the decolourisation of Reactive Blue 50 dye solutions, Electrochim. Acta, 2014, vol. 135, p. 11.

    Article  CAS  Google Scholar 

  22. Fateev V.N., Akel’kina, S.V., Velichenko, A.B., and Girenko, D.V., Formation of oxygen and ozone in the system with a solid polymer electrolyte: The influence of modifying PbO2, Russ. J. Electrochem., 1998, vol. 34, p. 815.

    CAS  Google Scholar 

  23. Velichenko, A.B., Amadelli, R., Zucchini, G.L., Girenko, D.V., and Danilov, F.I., Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts, Electrochim. Acta, 2000, vol. 45, p. 4341.

    Article  CAS  Google Scholar 

  24. Shmychkova, O., Luk’yanenko, T., and Velichenko, A., Bismuth doped PbO2 coatings: morphology and electrocatalytic properties, Univers. J. Chem., 2013, vol. 1, p. 30. http://www.hrpub.org/journals/jour_archive.php?id=64

    Google Scholar 

  25. Wang, J. and Jing, X., Study on the effect of lead dioxide particles on the anodic electrode performance for ozone generation, Int. J. Electrochem., 2006, vol. 74. p. 539.

    Article  CAS  Google Scholar 

  26. Velichenko, A.B., Girenko, D.V., Kovalyov, S.V., Gnatenko, A.N., Amadelli, R., and Danilov, F.I., Lead dioxide electrodeposition and its application: influence of fluoride and iron ions, J. Electroanal. Chem., 1998, vol. 454, p. 203.

    Article  CAS  Google Scholar 

  27. Amadelli, R., Maldotti, A., Molinari, A., Danilov, F.I., and Velichenko, A.B., Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at b-PbO2 anodes in acid media, J. Electroanal. Chem., 2002, vol. 534, p. 1.

    Article  CAS  Google Scholar 

  28. Velichenko, A.B., Girenko, D.V., Nikolenko, N.V., Amadelli, R., Baranova, E.A., and Danilov, F.I., Oxygen evolution on lead dioxide modified with fluorine and iron, Russ. J. Electrochem., 2000, vol. 36, p. 1216.

    Article  CAS  Google Scholar 

  29. Hyde, M.E., Jacobs, R.M.J., and Compton, R.G., An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology, J. Phys. Chem. B, 2004, vol. 108, p. 6381.

    Article  CAS  Google Scholar 

  30. Monahov, B. and Pavlov, D., Hydrated structures in the anodic layer formed on lead electrodes in H2SO4 solution, J. Appl. Electrochem., 1993, vol. 23, p. 1244.

    Article  CAS  Google Scholar 

  31. Babak, A.A., Fateev, V.N., Amadelli, R., and Potapova, G.F., Ozone electrosynthesis in an electrolyzer with solid polymer electrolyte, Russ. J. Electrochem., 1994, vol. 30, p. 739.

    Google Scholar 

  32. Feng, J., Johnson, D.C., Lowery, S.N., and Carey, J.J., Electrocatalysis of anodic oxygen-transfer reactions evolution of ozone, J. Electrochem. Soc., 1994, vol. 141, p. 2708.

    Article  CAS  Google Scholar 

  33. Grigoriev, S.A., Fedotov, A.A., Martemianov, S.A., and Fateev, V.N., Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals, Russ. J. Electrochem., 2014, vol. 50, p. 638.

    Article  CAS  Google Scholar 

  34. Fedotov, A.A., Grigor’ev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Synthesis of nanostructured electrocatalysts based on magnetron ion sputtering, Kinet. Catal., 2012, vol. 53, p. 753.]

    Article  CAS  Google Scholar 

  35. Sputtering of Solids by Ion Bombardment, Berish, R. Ed., Berlin: Springer, 1982; translated into Russian.

  36. Gel'man, N.E., Terent’eva, E.A., and Shanina, T.M., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods of Quantitative Organic Elementary Microanalysis), Moscow: Khimija, 1987.

    Google Scholar 

  37. Grigoriev, S.A., Fateev, V.N., Lutikova, E.K., Grigoriev, A.S., Bessarabov, D.G., Wei, X., and Ge, J., CNF-supported platinum electrocatalysts synthesized using plasma-assisted sputtering in pulse conditions for the application in a high-temperature PEM fuel cell, Int. J. Electrochem. Sci., 2016, vol. 11, p. 2085.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grigoriev.

Additional information

Original Russian Text © S.V. Akel’kina, A.S. Pushkarev, S.A. Grigoriev, I.V. Pushkareva, V.N. Fateev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 291–298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akel’kina, S.V., Pushkarev, A.S., Grigoriev, S.A. et al. Anode with the Active Layer for Electrosynthesizing Ozone in a System with Solid Polymer Electrolyte. Russ J Electrochem 54, 251–257 (2018). https://doi.org/10.1134/S1023193518030023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030023

Keywords

Navigation