Skip to main content
Log in

High Temperature Stability of Hydrated Ion Pairs Na+Cl(H2O) N under Conditions of a Flat Nanopore

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The high-temperature stability of hydrated ion pairs under conditions of a nanoscopic flat pore with hydrophobic structureless walls is studied by computer simulations. The limited space of the nanopore stimulates dissociation of the contact ion pair (CIP) with its transition to the state of the solvent-separated ion pair (SSIP); moreover, the ion pair demonstrates a high degree of stability on heating. The inverse temperature effect where the heating renders a moderate consolidating effect on the state of a hydrated contact ion pair is observed: when heated to the electrolyte boiling point, the free energy barrier that separates the CIP and SSIP states shifts by 2 molecules towards the larger hydration shells. On the pressure scale, the boundary between CIP and SSIP states shifts at the same rate as the saturating pressure with the increase in the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M., Science and technology for water purification in the coming decades, Nature, 2008, vol. 452, p. 301.

    Article  CAS  Google Scholar 

  2. Konatham, D., Yu, J., Ho, T.A., et al., Simulation insights for graphene based water desalination membranes, Langmuir, 2013, vol. 29, p. 11884.

    Article  CAS  Google Scholar 

  3. Gherasim, C.V., Cuhorka, J., and Mikulasek, P., Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modeling, J. Membr. Sci., 2013, vol. 436, p. 132.

    Article  CAS  Google Scholar 

  4. Richards, L.A., Richards, B.S., Corry, B., et al., Experimental energy barriers to anions transporting through nanofiltration membranes, Environ. Sci. Technol., 2013, vol. 47, p. 1968.

    Article  CAS  Google Scholar 

  5. Gouaux, E. and Mackinnon, R., Principles of selective ion transport in channels and pumps, Science, 2005, vol. 310, p. 1461.

    Article  CAS  Google Scholar 

  6. Aryal, P., Sansom, M.S.P., and Tucker, S.J., Hydrophobic gating in ion channels, J. Mol. Biol., 2015, vol. 427, p. 121.

    Article  CAS  Google Scholar 

  7. Wei, Y.-J., Xia, D.-H., and Song, Sh.-Zh., Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis, Russ. J. Electrochem., 2016, vol. 52, p. 560.

    Article  Google Scholar 

  8. Gryzunova, N.N., Denisova, A.G., Yasnikov, I.S., and Vikarchuk, A.A., Preparation of materials with a developed surface by thermal treatment and chemical etching of electrodeposited icosahedral small copper particles, Russ. J. Electrochem., 2015, vol. 51, p. 1176.

    Article  CAS  Google Scholar 

  9. Chmiola, J., Yushin, G., Gogotsi, Y., et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nm, Science, 2006, vol. 313, p. 1760.

    Article  CAS  Google Scholar 

  10. Yu, Z.N., Tetard, L., Zhai, L., et al., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 2015, vol. 8, p. 702.

    Article  CAS  Google Scholar 

  11. Cannon, J.J., Tang, D., Hur, N., et al., Competitive entry of sodium and potassium into nanoscale pores, J. Phys. Chem. B., 2010, vol. 114, p. 12252.

    Article  CAS  Google Scholar 

  12. Chen, H.Y. and Ruckenstein, E., Nanomembrane containing a nanopore in an electrolyte solution: a molecular dynamics approach, J. Phys. Chem. Lett., 2014, vol. 5, p. 2979.

    Article  CAS  Google Scholar 

  13. Haria, N.R. and Lorenz, C.D., Atomistic description of pressure-driven flow of aqueous salt solutions through charged silica nanopores, J. Phys. Chem. C, 2015, vol. 119, p. 12298.

    Article  CAS  Google Scholar 

  14. Ho, M.C., Casciola, M., Levine, Z.A., et al., Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores, J. Phys. Chem. B, 2013, vol. 117, p. 11633.

    Article  CAS  Google Scholar 

  15. Richards, L.A., Schafer, A.I., Richards, B.S., et al., Quantifying barriers to monovalent anion transport in narrow non-polar pores, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 11633.

    Article  CAS  Google Scholar 

  16. Shao, Q., Zhou, J., and Lu, L.H., Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes, Nano Lett., 2009, vol. 9, p. 989.

    Article  CAS  Google Scholar 

  17. Wander, M.C.F. and Shuford, K.L., Alkali halide interfacial behavior in a sequence of charged slit pores, J. Phys. Chem. C, 2011, vol. 115, p. 23610.

    Article  CAS  Google Scholar 

  18. Alishahi, M., Kamali, R., and Abouali, O., Molecular dynamics study of electric double layer in nanochannel, Russ. J. Electrochem., 2015, vol. 51, p. 49.

    Article  CAS  Google Scholar 

  19. Galashev, A.E. and Zaikov, Yu.P., Molecular dynamics study of Li+ migration through graphene membranes, Russ. J. Electrochem., 2015, vol. 51, p. 867.

    Article  CAS  Google Scholar 

  20. Kalluri, R.K., Ho, T.A., Biener, J., et al., Partition and structure of aqueous NaCl and CaCl2 electrolytes in carbon-slit electrodes, J. Phys. Chem. C, 2013, vol. 117, p. 13609.

    Article  CAS  Google Scholar 

  21. Lankin, A.V., Norman, G.E., and Stegailov, V.V., Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors, High Temperature, 2010, vol. 48, p. 837.

    Article  CAS  Google Scholar 

  22. Wander, M.C.F. and Shuford, K.L., Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon, J. Phys. Chem. C, 2010, vol. 114, p. 20539.

    Article  CAS  Google Scholar 

  23. Xu, K., Ji, X., Chen, C., et al., Electrochemical double layer near polar reduced graphene oxide electrode: insights from molecular dynamic study, Electrochim. Acta, 2015, vol. 166, p. 142.

    Article  CAS  Google Scholar 

  24. Song, H.D. and Beck, T.L., Temperature dependence of gramicidin channel transport and structure, J. Phys. Chem. C, 2013, vol. 117, p. 3701.

    Article  CAS  Google Scholar 

  25. Tang, Y.W., Chan, K.Y., and Szalai, I., Structural and transport properties of an SPC/E electrolyte in a nanopore, J. Phys. Chem. B, 2004, vol. 108, p. 18204.

    Article  CAS  Google Scholar 

  26. Tang, D. and Kim, D., The effect of counter-ions on the ion selectivity of potassium and sodium ions in nanopores, Bio-Med. Mater. Eng., 2014, vol. 24, p. 383.

    CAS  Google Scholar 

  27. Zhu, Y.D., Guo, X.J., Shao, Q., et al. Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube, Fluid Phase Equilib., 2010, vol. 297, p. 215.

    Article  CAS  Google Scholar 

  28. Gao, X, Zhao, T.S., Li, Z.G., Effects of ions on the diffusion coefficient of water in carbon nanotubes, J. Appl. Phys., 2014, vol. 116, p. 054311.

    Article  Google Scholar 

  29. Shao, Q, Huang, L.L., Zhou, J., et al., Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1896.

    Article  CAS  Google Scholar 

  30. Shevkunov, S.V., Nucleation of water vapor in microcracks on the surface of ß-AgI aerosol particles: 1. The structure of nuclei, Colloid J., 2007, vol. 69, p. 360.

    Article  CAS  Google Scholar 

  31. Shevkunov, S.V., Nucleation of water vapor in microcracks on the surface of ß-AgI aerosol particles: 2. Thermodynamics of nucleation, Colloid J., 2007, vol. 69, p. 378.

    Article  CAS  Google Scholar 

  32. Shevkunov, S.V., Structure of water in microscopic fractures of a silver iodide crystal, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 313.

    Article  CAS  Google Scholar 

  33. Shevkunov, S.V., Water in extremely narrow planar pores with crystalline walls. 1. Structure, Colloid J., 2014, vol. 76, p. 221.

    Article  CAS  Google Scholar 

  34. Shevkunov, S.V., Water in extremely narrow planar pores with crystalline walls. 2. Thermodynamics, Colloid J., 2014, vol. 76, p. 240.

    Article  CAS  Google Scholar 

  35. Shevkunov, S.V., A computer simulation of the interaction of unsaturated vapors with a defective surface of a ß-AgI crystal, Russ. J. Phys. Chem. A, 2005, vol. 79, p. 1653.

    CAS  Google Scholar 

  36. Shevkunov, S.V., Computer simulation of the initial stage of the nucleation of water vapors on the silver iodide crystal surface: 1.Microstructure, Colloid J., 2005, vol. 67, p. 497.

    Article  CAS  Google Scholar 

  37. Shevkunov, S.V., Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces, J. Exp. Theor. Phys., 2008, vol. 107, p. 965.

    Article  CAS  Google Scholar 

  38. Shevkunov, S.V., Structure of water adsorbed in slitshaped pores of silver iodide crystal, Comput. Theor. Chem., 2016, vol. 1084, p. 1.

    Article  CAS  Google Scholar 

  39. Shevkunov, S.V., The phenomenon of domain formation in a liquid film on a polarizable substrate, Dokl. Phys., 2011, vol. 56, p. 323.

    Article  CAS  Google Scholar 

  40. Shevkunov, S.V., Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 1. Spatial organization, Colloid J., 2012, vol. 74, p. 589.

    Article  CAS  Google Scholar 

  41. Shevkunov, S.V., Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 2. Thermodynamic stability, Colloid J., 2012, vol. 74, p. 608.

    Article  CAS  Google Scholar 

  42. Shevkunov, S.V., Domain nucleation in the contact layer at an interface of water and polarizable substrate, Russ. J. Phys. Chem. A, 2013, vol. 87, p. 1654.

    Article  CAS  Google Scholar 

  43. Shevkunov, S.V., Water vapor nucleation on a crystal surface in a strong electric field, Colloid J., 2013, vol. 75, p. 444.

    Article  CAS  Google Scholar 

  44. Shevkunov, S.V., Structure of the hydration shell of the Na+ ion in a planar nanopore with hydrophobic walls, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1744.

    Article  CAS  Google Scholar 

  45. Shevkunov, S.V., Thermodynamic characteristics of the Na+ ion in a planar nanopore with hydrophobic walls, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 2165.

    Article  CAS  Google Scholar 

  46. Shevkunov S.V. Water vapor clustering in the field of a chlorine anion occurring, Colloid J., 2014, vol. 76, p. 490.

    Article  CAS  Google Scholar 

  47. Shevkunov, S.V., The hydrate shell of a Cl–ion in a planar nanopore. Structure, Russ. J. Electrochem., 2014, vol. 50, p. 1118.

    Article  CAS  Google Scholar 

  48. Shevkunov, S.V., The hydrate shell of a Cl–ion in a planar nanopore. Thermodynamic stability, Russ. J. Electrochem., 2014, vol. 50, p. 1127.

    Article  CAS  Google Scholar 

  49. Shevkunov, S.V., Phenomenon of the ousting of a monatomic ion from its hydration shell in flat nanopores, J. Struct. Chem., 2016, vol. 57, p. 104.

    Article  CAS  Google Scholar 

  50. Shevkunov, S.V., Hydration of Cl–ion in a planar nanopore with hydrophilic walls. 1. Molecular structure, Colloid J., 2016, vol. 78, p. 121.

    Article  CAS  Google Scholar 

  51. Shevkunov, S.V., Hydration of Cl–ion in a planar nanopore with hydrophilic walls. 2. Thermodynamic stability, Colloid J., 2016, vol. 78, p. 137.

    Article  CAS  Google Scholar 

  52. Shevkunov, S.V., Computer simulation of the hydration of a chloride anion in a nanopore with hydrophilic walls, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1015.

    Article  CAS  Google Scholar 

  53. Shevkunov, S.V., Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 1. Spatial organization, Colloid J., 2016, vol. 78, p. 242.

    Article  CAS  Google Scholar 

  54. Shevkunov, S.V., Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 2. Thermodynamic properties, Colloid J., 2016, vol. 78, p. 257.

    Article  CAS  Google Scholar 

  55. Shevkunov, S.V., Structure and electric properties of the hydration shell of a singly charged chloride ion in a nanopore with hydrophilic walls, Russ. J. Electrochem., 2016, vol. 52, p. 397.

    Article  CAS  Google Scholar 

  56. Shevkunov, S.V., Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1879.

    Article  CAS  Google Scholar 

  57. Shevkunov, S.V., Structure and electric properties of sodium ion hydrate shell in nanopore with hydrophilic walls, Russ. J. Electrochem., 2016, vol. 92, p. 910.

    Article  Google Scholar 

  58. Shevkunov, S.V., Water vapor nucleation on ion pairs under the conditions of a planar nanopore, Colloid J., 2016, vol. 78, p. 542.

    Article  CAS  Google Scholar 

  59. Shevkunov, S.V., Ion pairs in aqueous electrolyte microdrops under conditions of a flat nanopore, Russ. J. Electrochem., 2016, vol. 52, p. 1064.

    Article  CAS  Google Scholar 

  60. Shevkunov, S.V., Structure and stability of hydrogen bonds under conditions of heating in nanopores, HighTemperature, 2015, vol. 53, p. 259.

    CAS  Google Scholar 

  61. Shevkunov, S.V., Numerical calculation of the critical size of a new nuclei phase, Kolloidn. Zh., 1983, vol. 45, no. 5, p. 1019.

    Google Scholar 

  62. Shevkunov, S.V., Calculation of the Gibbs energy of the reaction by the Monte Carlo method, Russ. J. Gen. Chem., 2002, vol. 72, p. 685.

    Article  CAS  Google Scholar 

  63. Shevkunov, S.V., Computer simulation of molecular complexes H3O+(H2O)n under conditions of thermal fluctuations: 2. Work of formation and structure, Russ. J. Gen. Chem., 2004, vol. 74, p. 1471.

    Article  CAS  Google Scholar 

  64. Shevkunov, S.V., Monte Carlo calculations of the characteristics of the hydration sheaths of the Cl–and H3O+ ions in water vapor, Russ. J. Phys. Chem., 2004, vol. 78, p. 1590.

    Google Scholar 

  65. Shevkunov, S.V., Computer simulation of the initial stage of the nucleation of water vapors on the silver iodide crystal surface: 2. Thermodynamics, Colloid J., 2005, vol. 67, p. 509.

    Article  CAS  Google Scholar 

  66. Shevkunov, S.V., Numerical simulation of water vapor nucleation on electrically neutral nanoparticles, J. Exp. Theor. Phys., 2009, vol. 108, p. 447.

    Article  CAS  Google Scholar 

  67. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Monte Carlo bicanonical ensemble simulation for sodium cation hydration free energy in liquid water, Fluid Phase Equilib., 2005, vol. 233, p. 34.

    Article  CAS  Google Scholar 

  68. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Ionwater cluster free energy computer simulation using some of most popular ion-water and water-water pair interaction models, Chem. Phys., 2007, vol. 332, p. 188.

    Article  CAS  Google Scholar 

  69. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Bicanonical Monte Carlo simulation of the structural properties of Cl–(H2O)n clusters using entropy data based model, J. Mol. Struct.: THEOCHEM, 2005, vol. 725, p. 191.

    Article  CAS  Google Scholar 

  70. Shevkunov, S.V., Effect of chlorine ions on the stability of nucleation cores in condensing water vapors, Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1584.

    Article  CAS  Google Scholar 

  71. Shevkunov, S.V., Adsorption of water vapor on the AgI surface: A computer experiment, Russ. J. Gen. Chem., 2005, vol. 75, p. 1632.

    Article  CAS  Google Scholar 

  72. Shevkunov, S.V., Molecular structure of finely disperse Na+Cl–(H2O)n aerosol particles in water vapor, Colloid J., 2014, vol. 76, p. 753.

    Article  CAS  Google Scholar 

  73. Shevkunov, S.V., Charge separation in Na+Cl–(H2O)n clusters in water vapors. 1. Intermolecular interactions, Colloid J., 2010, vol. 72, p. 93.

    Article  CAS  Google Scholar 

  74. Shevkunov, S.V., Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Model of interactions, Russ. J. Electrochem., 2013, vol. 49, p. 228.

    Article  CAS  Google Scholar 

  75. Arshadi, M., Yamdagni, R., and Kebarle, P., Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions, J. Phys. Chem., 1970, vol. 74, p. 1475.

    Article  CAS  Google Scholar 

  76. Hiroaka, K., Mizuse, S., and Yamade, S., Solvation of halide ions with water and acetonitrile in the gas phase, J. Phys.Chem., 1988, vol. 92, p. 3943.

    Article  Google Scholar 

  77. Olleta, A.C., Lee, H.M., and Kim, K.S., Ab initio study of hydrated sodium halides NaX(H2O)1–6 NaX(H2O)1–6 (X = F, Cl, Br, and I), J. Chem. Phys., 2006, vol. 124, p. 024321.

    Article  Google Scholar 

  78. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook of Atomic and Molecular Physics), Moscow: Atomizdat, 1980

    Google Scholar 

  79. Shevkunov, S.V., Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Ionization mechanism, Russ. J. Electrochem., 2013, vol. 49, p. 238.

    Article  CAS  Google Scholar 

  80. Shevkunov, S.V., A high energy barrier to charge recombination in ionized water vapor, High Energy Chem., 2009, vol. 43, p. 341.

    Article  CAS  Google Scholar 

  81. Shevkunov, S.V., Charge separation in Na+Cl–(H2O)n clusters in water vapors. 2. Free energy, Colloid J., 2010, vol. 72, p. 107.

    Article  CAS  Google Scholar 

  82. Shevkunov, S.V., Nucleation of water vapor on Na+Cl–ion pairs: computer simulation, Colloid J., 2011, vol. 73, p. 135.

    Article  CAS  Google Scholar 

  83. Shevkunov, S.V., Thermodynamic stability of finely dispersed Na+Cl–(H2O)n aerosol particles in water vapor, Colloid J., 2015, vol. 77, p. 359.

    Article  CAS  Google Scholar 

  84. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956 (translated into Russian).

    Google Scholar 

  85. Shevkunov, S.V., Nonpair interactions in Na+(H2O)n clusters under thermal fluctuation conditions, Russ. J. Phys. Chem. A, 2009, vol. 83, p. 972.

    Article  CAS  Google Scholar 

  86. Shevkunov, S.V., Polarization effects in Cl–(H2O)n clusters. Computer simulation, Colloid J., 2009, vol. 71, p. 406.

    Article  CAS  Google Scholar 

  87. Shevkunov S.V., Crisis of stability of hydration shell of Na+ ion in condensing water vapor, Colloid J., 2011, vol. 73, p. 275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. High Temperature Stability of Hydrated Ion Pairs Na+Cl(H2O) N under Conditions of a Flat Nanopore. Russ J Electrochem 54, 153–169 (2018). https://doi.org/10.1134/S1023193518020064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518020064

Keywords

Navigation