Skip to main content
Log in

Structural and Conductive Characteristics of Fe/Co Nanotubes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The properties of Fe/Co nanotubes, which were fabricated by the method of electrochemical template synthesis, are studied. It is shown that the atomic ratio between the metals in the nanotubes shifts in the direction of cobalt with increasing potential difference during their synthesis; the geometric parameters of nanotubes, in particular, the wall thickness, also vary. Using the X-ray diffraction analysis, it was found that an increase in the concentration of cobalt in the crystal structure of nanotubes leads to a decrease in the interplanar distance and an increase in the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parthasarathy, R.V., Phani, K.L.N., and Martin, C.R., Template synthesis of graphitic nanotubules, Adv. Mater., 1995, vol. 7, p. 896.

    Article  CAS  Google Scholar 

  2. Chakarvarti, S.K. and Vetter, J., Morphology of etched pores and microstructures fabricated from nuclear track filters, Nucl. Instrum. Methods Phys. Res., Sect. B, 1991, vol. 62, p. 109.

    Article  Google Scholar 

  3. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett., 1994, vol. 65, no. 19, p. 2484.

    Article  CAS  Google Scholar 

  4. Fink, D., Petrov, A.V., Rao, V., and Al, E., Production parameters for the formation of metallic nanotubules in etched tracks, Radiat. Meas., 2003, vol. 36, p. 751.

    Article  CAS  Google Scholar 

  5. Veena Gopalan, E., Malini, K.A., and Santhoshkumar, G., Template-assisted synthesis and characterization of passivated nickel nanoparticles, Nanoscale Res. Lett., 2010, vol. 5, p. 889.

    Article  CAS  Google Scholar 

  6. Stortini, A.M., Moretto, L.M., and Mardegan, A., Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor, Sens. Actuators, B, 2015, vol. 207, p. 186.

    Article  CAS  Google Scholar 

  7. Gehlawat, D. and Chauhan, R.P., Swift heavy ions induced variation in the electronic transport through Cu nanowires, Mater. Chem. Phys., 2014, vol. 145, p. 60.

    Article  CAS  Google Scholar 

  8. Amandeep Kaur and Chauhan, R.P., Carbon ion beam-induced variation in orientation of crystal planes of polycrystalline Zn nanowires, Radiat. Eff. Defects Solids, 2014, vol. 169, p. 513.

    Article  Google Scholar 

  9. Pallavi Rana, Devender Gehlawat, and Chauhan, R.P., Effect of gamma irradiation on electrical properties of Cu nanowires, AIP Conf. Proc., 2014, vol. 1591, p. 265.

    Google Scholar 

  10. Pallavi Rana and Chauhan, R.P., Size and irradiation effects on the structural and electrical properties of copper nanowires, Physica B, 2014, vol. 451, p. 26.

    Article  Google Scholar 

  11. Cornelius, T.W., Pitch, O., Mtiller, S., Neumann, R., Karim, S., and Duan, J.L., Burnout current density of bismuth nanowires, J. Appl. Physics, 2008, vol. 103, p. 103713.

    Article  Google Scholar 

  12. Nasirpouri, F., GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes, J. Magn. Magn. Mater., 2007, vol. 308, p. 35.

    Article  CAS  Google Scholar 

  13. Azarian, A., Field emission of Co nanowires in polycarbonate template, Thin Solid Films, 2009, vol. 517, p. 1736.

    Article  CAS  Google Scholar 

  14. Baranova, L.A., Nickel field-emission microcathode: art of fabrication, properties, and applications, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, p. 1686.

    Article  CAS  Google Scholar 

  15. Adam, E., Vortex detection by electrical transport measurements on a single lead nanowire under axial magnetic field, Appl. Phys. Lett., 2008, vol. 92, p. 012516.

    Article  Google Scholar 

  16. Sanchez-Barriga, J., Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane, J. Magn. Magn. Mater., 2007, vol. 312, p. 99.

    Article  CAS  Google Scholar 

  17. Qin, J., Nogués, J., Mikhaylova, M., Roig, A., Muñoz, J.S., and Muhammed, M., Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in amorphous anodized alumina templates, Chem. Mater., 2005, vol. 17, p. 1829.

    Article  CAS  Google Scholar 

  18. Ohgai, T., Hoffer, X., Fabian, A., Gravier, L., and Ansermet, J.-P., Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium, J. Mater. Chem., 2013, vol. 13, p. 2530.

    Article  Google Scholar 

  19. Haehnel, V., Fahler, S., Schaaf, P., Miglierini, M., Mickel, C., Schultz, L., and Schlörb, H., Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes, Acta Mater., 2010, vol. 58, p. 2330.

    Article  CAS  Google Scholar 

  20. Salem, M.S., Sergelius, P., Zierold, R., Montero Moreno, J.M., Görlitz, D., and Nielsch, K., Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition, J. Mater. Chem., 2012, vol. 22, p. 8549.

    Article  CAS  Google Scholar 

  21. Sharif, R., Shamaila, S., Ma, M., Yao, L.D., Yu, R.C., Han, X.F., Wang, Y., and Khaleeq-ur-Rahman, M., Magnetic and microstructural characterizations of CoFe and CoFeB nanowires, J. Magn. Magn. Mater., 2008, vol. 320, p. 1512.

    Article  CAS  Google Scholar 

  22. Hua, Z., Yang, S., Huang, H., Lv, L., Lu, M., Gu, B., and Du, Y., Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure, Nanotechnology, 2006, vol. 17, p. 5106.

    Article  CAS  Google Scholar 

  23. Zhou, D., Wang, T., Zhu, M.G., Guo, Z.H., Li, W., and Li, F.S., Magnetic interaction in FeCo alloy nanotube array, J. Magn., 2011, vol. 16, p. 413.

    Article  Google Scholar 

  24. Li, F.S., Zhou, D., Wang, T., Wang, Y., Song, L.J., and Xu, C.T., Fabrication and magnetic properties of FeCo alloy nanotube array, J. Appl. Phys., 2007, vol. 101, p. 1.

    CAS  Google Scholar 

  25. Bond, A.M., Fleischmann, M., and Robinson, J., Voltammetric measurements using microelectrodes in highly dilute solutions: theoretical considerations, J. Electroanal. Chem., 1984, vol. 168, p. 299.

    Article  CAS  Google Scholar 

  26. Rusakov, V.S., Kadyrzhanov, K.K., Kozlovskiy, A.L., Kiseleva, T.Yu., Zdorovets, M.V., and Fadeev, M.S., A Mössbauer study of iron and iron–cobalt nanotubes in polymer ion-track membranes, Moscow Univ. Physics Bull., 2016, vol. 71, p.193.

    Article  Google Scholar 

  27. Frolov, K.V., Zagorskii, D.L., Lyubutin, I.S., Korotkov, V.V., Bedin, S.A., Sulyanov, S.N., Artemov, V.V., and Mchedlishvili, B.V., Synthesis, phase composition, and magnetic properties of iron nanowires prepared in the pores of polymer track-etched membranes, JETP Letters, 2014, vol. 99, p. 570.

    Article  CAS  Google Scholar 

  28. Dauginet-De Pra, L., Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures, Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol. 196, p. 81.

    Article  CAS  Google Scholar 

  29. Narayanan, T.N., Shaijumon, M.M., and Ajayan, P.M., Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth, J. Phys. Chem. C, 2008, vol. 112, p. 14281.

    Article  CAS  Google Scholar 

  30. Motoyama, M., Fukunaka, Y., Sakka, T., Ogata, Y.H., and Kikuchi, S., Electrochemical processing of Cu and Ni nanowire arrays, J. Electroanal. Chem., 2005, vol. 584, p. 84.

    Article  CAS  Google Scholar 

  31. Shao, P., Ji, G., and Chen, P., Gold nanotube membranes: Preparation, characterization and application for enantioseparation, J. Memb. Sci., 2005, vol. 255, p. 1.

    Article  CAS  Google Scholar 

  32. Chen, Z., Zhan, Q., Xue, D., Li, F., and Zhou, X., Mossbauer study of Fe—Co nanowires, J. Phys. Condens. Matter., 2002, vol. 14, p. 613.

    Article  Google Scholar 

  33. Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., Takahashi, R., Young, M.L., Mehta, A., Bendersky, L.A., Lofland, S.E., Wuttig, M., and Takeuchi, I., Giant magnetostriction in annealed Co1–xFex thin-films, Nat. Commun., 2011, vol. 2, article number 518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskii, A.L., Kadyrzhanov, K.K. & Zdorovets, M.V. Structural and Conductive Characteristics of Fe/Co Nanotubes. Russ J Electrochem 54, 178–185 (2018). https://doi.org/10.1134/S1023193518020040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518020040

Keywords

Navigation