Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 292–301 | Cite as

Highly Sensitive Nanostructured Electrochemical Sensor Based on Carbon Nanotubes-Pt Nanoparticles Paste Electrode for Simultaneous Determination of Levodopa and Tyramine

  • Mehdi Baghayeri
  • Hadi Beitollahi
  • Ali Akbari
  • Samaneh Farhadi
Article

Abstract

A multicomponent electrochemical sensor, with two nanometer-scale components in sensing matrix/electrode, was used to simultaneous determination of levodopa (LD) and tyramine (TR) in pharmaceutical and diet samples. Multiwall carbon nanotubes (MWCNTs) were used as carbonaceous materials in the electrode construction. 5-amino-3',4'-dimethoxy-biphenyl-2-ol (5ADMB) was used as electron mediator and Pt nanoparticles (nPt) as a catalyst. The 5ADMB catalyzes the oxidation of LD to the corresponding catecholamine, which is electrochemically reduced back to LD. Preparation of this electrode was very simple and modified electrode showed good properties at electrocatalytic oxidization of LD and TR. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and TR has been explored at the modified electrode. Differential pulse voltammetry peak currents of LD and TR increased linearly with their concentrations at the ranges of 0.50–100.0 μM and 0.60–100.0 μM, respectively. Also, the detection limits for LD and TR were 0.31 and 0.52 μM, respectively. The electrode exhibited an efficient catalytic response with good reproducibility and stability.

Keywords

Pt nanoparticles catalysis tyramine levodopa multi-walled carbon nanotube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hernández-Cázares, A.S., Aristoy, M.C., and Toldrá, F., J. Food Eng., 2011, vol. 110, p. 324.CrossRefGoogle Scholar
  2. 2.
    Bulushi, I.A., Poole, S., Deeth, H.C., and Dykes, G.A., Crit. Rev. Food Sci. Nutr., 2009, vol. 49, p. 369.CrossRefGoogle Scholar
  3. 3.
    Önal, A., Food Chem., 2007, vol. 103, p. 1475.CrossRefGoogle Scholar
  4. 4.
    Lovenberg, W., Some vaso- and psychoactive substances in food, toxicants occurring naturally in foods, 2nd ed., Natl. Acad. Sci., Washington DC, 1973.Google Scholar
  5. 5.
    Masson, F., Talon, R., and Montel, M.C., Int. J. Food Microbiol., 1996, vol. 32, p. 199.CrossRefGoogle Scholar
  6. 6.
    Santos-Buelga, C., Nogales-Alarcon, A., and Marine-Font, A., J. Food Sci., 1981, vol. 46, p. 1794.CrossRefGoogle Scholar
  7. 7.
    Lapainis, T., Scanlan, C., Rubakhin, S.S., and Sweedler, J.V., Anal. Bioanal. Chem., 2007, vol. 387, p. 97.CrossRefGoogle Scholar
  8. 8.
    Ladero, V., Martínez, N., Martín, M.C., Fernández, M., and Alvarez, M.A., Food Res. Int., 2010, vol. 43, p. 289.CrossRefGoogle Scholar
  9. 9.
    Huang, K.J., Wei, C.Y., Liu, W.L., Xie, W.Z., Zhang, J.F., and Wang, W., J. Chromatogr. A, 2009, vol. 1216, p. 6636.CrossRefGoogle Scholar
  10. 10.
    Banks, C.N. and Adams, M.E., Toxicon, 2012, vol. 59, p. 320.CrossRefGoogle Scholar
  11. 11.
    Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., and Nejati, M., Bioelectrochemistry, 2009, vol. 75, p. 1.CrossRefGoogle Scholar
  12. 12.
    Huang, J., Xing, X., Zhang, X., He, X., Lin, Q., Lian, W., and Zhu, H., Food Res. Int., 2011, vol. 44, p. 276.CrossRefGoogle Scholar
  13. 13.
    Daneshgar, P., Norouzi, P., Ganjali, M.R., Ordikhani-Seyedlar, A., and Eshraghi, H., Colloid. Surf. B, 2009, vol. 68, p. 27.CrossRefGoogle Scholar
  14. 14.
    Tolokan, A., Klebovich, I., Balogh-Nemes, K., and Horvai, G., J. Chromatogr. B, 1997, vol. 698, p. 201.CrossRefGoogle Scholar
  15. 15.
    Zhao, S., Bai, W., Wang, B., and He, M., Talanta, 2007, vol. 73, p. 142.CrossRefGoogle Scholar
  16. 16.
    Teixeira, M.F., Bergamini, M.F., Marques, C.M., and Bocchi, N., Talanta, 2004, vol. 63, p. 1083.CrossRefGoogle Scholar
  17. 17.
    Shahrokhian, S. and Asadian, E., J. Electroanal. Chem., 2009, vol. 636, p. 40.CrossRefGoogle Scholar
  18. 18.
    Stockley, I.H., Monoamine Oxidase Inhibitor Drug Interactions, Oxford, U.K.: Drug Interactions, Blackwell Scientific Publications, 1993.Google Scholar
  19. 19.
    Lin, J. and Cashman, J.R., Chem. Res. Toxicol., 1997, vol. 10, p. 842.CrossRefGoogle Scholar
  20. 20.
    Marley, E., Blackwell, B., and Histamine, D., Adv. Pharmacol. Chemother., 1971, vol. 8, p. 185.CrossRefGoogle Scholar
  21. 21.
    Merino, M., Nuñez-Vergara, L.J., and Squella, J.A., Electroanalysis, 1999, vol. 11, p. 1285.CrossRefGoogle Scholar
  22. 22.
    Beitollahi, H. and Mostafavi, M., Electroanalysis, 2014, vol. 26, p. 1090.CrossRefGoogle Scholar
  23. 23.
    Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Electroanalysis, 2015, vol. 27, p. 2620.CrossRefGoogle Scholar
  24. 24.
    Beitollahi, H. and Nekooei, S., Electroanalysis, 2015, vol. 28, p. 645.CrossRefGoogle Scholar
  25. 25.
    Jahani, S. and Beitollahi, H., Electroanalysis, 2016, vol. 28, no. 9, p. 2022. doi 10.1002/elan.201501136CrossRefGoogle Scholar
  26. 26.
    Molaakbari, E., Mostafavi, A., Beitollahi, H., and Alizadeh, R., Analyst, 2014, vol. 139, p. 4356.CrossRefGoogle Scholar
  27. 27.
    Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Anal. Chem., 2008, vol. 80, p. 9848.CrossRefGoogle Scholar
  28. 28.
    Beitollahi, H., Gholami, A., and Ganjali, M.R., Mat. Sci. Eng. C, 2015, vol. 57, p. 107.CrossRefGoogle Scholar
  29. 29.
    Baghayeri, M., Amiri, A., and Farhadi, S., Sens. Actuat. B, 2016, vol. 225, p. 354.CrossRefGoogle Scholar
  30. 30.
    Yoon, J.H., Muthuraman, G., Yang, J., Shim, Y.B., and Won, M. S., Electroanalysis, 2007, vol. 19, p. 1160.CrossRefGoogle Scholar
  31. 31.
    Karam, P., Xin, Y., Jaber, S., and Halaoui, L.I., J. Phys. Chem. C, 2008, vol. 112, p. 13846.CrossRefGoogle Scholar
  32. 32.
    Zheng, S.F., Hu, J.S., Zhong, L.S., Wan, L.J., and Song, W.G., J. Phys. Chem. C, 2007, vol. 111, p. 11174.CrossRefGoogle Scholar
  33. 33.
    Raoof, J.B., Baghayeri, M., and Ojani, R., Colloid. Surf. B, 2012, vol. 95, p. 121.CrossRefGoogle Scholar
  34. 34.
    Beitollahi, H., Ardakani, M.M., Ganjipour, B., and Naeimi, H., Biosens. Bioelectron., 2008, vol. 24, p. 362.CrossRefGoogle Scholar
  35. 35.
    Mazloum-Ardakani, M., Ganjipour, B., Beitollahi, H., Amini, M.K., Mirkhalaf, F., Naeimi, H., and Nejati-Barzoki, M., Electrochim. Acta, 2011, vol. 56, p. 9113.CrossRefGoogle Scholar
  36. 36.
    Laviron, E., J. Electroanal. Chem., 1974, vol. 52, p. 355.CrossRefGoogle Scholar
  37. 37.
    Beitollahi, H., Mohadesi, A., Mahani, S.K., and Akbari, A., Anal. Methods, 2012, vol. 4, p. 1029.CrossRefGoogle Scholar
  38. 38.
    Pournaghi-Azar, M.H. and Razmi-Nerbin, H., J. Electroanal. Chem., 2000, vol. 488, p. 17.CrossRefGoogle Scholar
  39. 39.
    Raoof, J.B., Ojani, R., Amiri-Aref, M., and Baghayeri, M., Sens. Actuat. B, 2012, vol. 166, p. 508.CrossRefGoogle Scholar
  40. 40.
    Raoof, J.B., Ojani, R., Baghayeri, M., and Amiri-Aref, M., Anal. Methods, 2012, vol. 4, p. 1579.CrossRefGoogle Scholar
  41. 41.
    Goyal, R.N., Gupta, V.K., and Bachheti, N., Anal. Chim. Acta, 2007, vol. 597, p. 82.CrossRefGoogle Scholar
  42. 42.
    Sanghavi, B.J. and Srivastava, A.K., Analyst, 2013, vol. 138, p. 1395.CrossRefGoogle Scholar
  43. 43.
    Atta, N.F., El-Kady, M.F., and Galal, A., Anal. Biochem., 2010, vol. 400, p. 78.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Mehdi Baghayeri
    • 1
  • Hadi Beitollahi
    • 2
  • Ali Akbari
    • 3
  • Samaneh Farhadi
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceHakim Sabzevari UniversitySabzevarIran
  2. 2.Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
  3. 3.Department of ChemistryUniversity of JiroftJiroftIran

Personalised recommendations