Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 283–291 | Cite as

Investigations Ce Doped MnO2/rGO as High Performance Supercapacitors Material

  • Yansu Wang
  • Yali Zhan
  • Xiyang Yan
  • Zhiling Ma


The novel Ce doped MnO2/rGO composite was fabricated by a simple two-step hydrothermal method reacted for different times. As results, the composite reacted for 1h exhibits better electrochemical performance and rate capacity, the capacitive retention is 85% from 130.44 F g–1 for first cycle decrease to 111.11 F g–1 after 1000 cycles at the current density of 1 A g–1, and 14.7 W h kg–1 of energy density. Moreover, the BET surface area is 243 m2 g–1, and the average pore size is 7.9 nm, which will be convenient for the quick transport and migration of electrolyte ions during the charge–discharge process, and further confirm good rate capability.


Ce/MnO2/rGO hydrothermal method electrode material supercapacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knebel, S., Pesic, M., Cho, K., and Mikolajick, T., Ultra-thin ZrO2/SrO/ZrO2 insulating stacks for future dynamic random access memory capacitor applications, J. Appl. Phys., 2015, vol. 117, p. 2241021.CrossRefGoogle Scholar
  2. 2.
    Jiang, J., Liu, J., and Huang, X., Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes, J. Phys. Chem. C, 2010, vol. 114, p. 929.CrossRefGoogle Scholar
  3. 3.
    Xiao, K., Xia, L., Ding, L.-X., and Wang, H., Honeycomb- like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage, J. Mater. Chem. A, 2015, vol. 3, p. 6128.CrossRefGoogle Scholar
  4. 4.
    Iranagh, S.A., Eskandarian, L., and Mohammadi, R., Synthesis of MnO2-polyaniline nanofiber composites to produce high conductive polymer, Synthetic Metals, 2015, vol. 172, p. 49.CrossRefGoogle Scholar
  5. 5.
    Zhao, Y.-Q., Zhao, D.-D., Tang, P.-Y., Wang, Y.-M., and Xu, C.-L., MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy, Mater. Lett., 2012, vol. 76, p. 127.CrossRefGoogle Scholar
  6. 6.
    Li, W., Xu, K., Zou, R., and Hu, J., MnO2 nanoflower arrays with high rate capability for flexible supercapacitors, Chem. ElectroChem., 2014, vol. 1, p. 1003.Google Scholar
  7. 7.
    Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., and Choi, J.W., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 2011, vol. 11, p. 2472.CrossRefGoogle Scholar
  8. 8.
    Nguyen, V.H., Nguyen, T.T., and Shim, J.-J., Rapid one-step synthesis and electrochemical properties of graphene/carbon nanotubes/MnO2 composites, Synthetic Metals, 2015, vol. 199, p. 276.CrossRefGoogle Scholar
  9. 9.
    Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., and Qin, L.-C., Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon, 2011, vol. 49, p. 2917.CrossRefGoogle Scholar
  10. 10.
    Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., and Wei, F., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater., 2011, vol. 21, p. 2366.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z.-Y., Hu, Z.-A., Yang, Y.-Y., Wang, H.-W., Chang, Y.-Q., Chen, Y.-L., and Lei, Z.-Q., Ce doped Mn3O4 and its electrochemical capacitive behavior, Acta Phys.-Chim. Sin., 2011, vol. 27, pp. 1673–1678.Google Scholar
  12. 12.
    Wang, X.-L., Zheng, Y.-Y., and Liu, X.-B., Synthesis and electrochemical properties of MnO2 hollow nanospheres, CIESC J., 2015, vol. 66, p. 1201.Google Scholar
  13. 13.
    Zhang, H., Gu, J., Tong, J., Hu, Y., Guan, B., Hu, B., Zhao, J., and Wang, C., Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes, Chem. Eng. J., 2016, vol. 286, p. 139.CrossRefGoogle Scholar
  14. 14.
    Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.CrossRefGoogle Scholar
  15. 15.
    Zhu, C., Guo, S., Fang, Y., and Dong, S., Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS Nano, 2010, vol. 4, p. 2429.CrossRefGoogle Scholar
  16. 16.
    Chen, X.A., Chen, X., Zhang, F., Yang, Z., and Huang, S., One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor, J. Power Sources, 2013, vol. 243, p. 555.CrossRefGoogle Scholar
  17. 17.
    Fan, L.-Q., Liu, G.-J., Wu, J.-H., Liu, L., Lin, J.-M., and Wei, Y.-L., Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes, Electrochimica Acta, 2014, vol. 137, p. 26.CrossRefGoogle Scholar
  18. 18.
    Chen, S., Zhu, J.-W., Wu, X.-D., Han, Q.-F., and Wang, X., Graphene oxide/MnO2 nanocomposites for supercapacitors, ACS NANO, 2010, vol. 4, p. 2822.CrossRefGoogle Scholar
  19. 19.
    Ezeigwe, E.R., Tan, M.T.T., Khiew, P.S., and Siong, C.W., Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceram. Int., 2015, vol. 41, p. 11418.CrossRefGoogle Scholar
  20. 20.
    Wen, J.G. and Zhou, Z.T., Electrochemical performance of manganese dioxide for supercapacitors materials with neutral aqueous electrolyte, Chin. Manganese Industry, 2004, vol. 22, p. 31.Google Scholar
  21. 21.
    Wang, G., Tang, Q., Bao, H., Li, X., and Wang, G., Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance, J. Power Sources, 2013, vol. 241, p. 231.CrossRefGoogle Scholar
  22. 22.
    Zhu, T., He, Z., Zhang, G., Lu, Y., Lin, C., Chen, Y., and Guo, H., Effect of low magnetic fields on the morphology and electrochemical properties of MnO2 films on nickel foams, J. Alloys Compd., 2015, vol. 644, p. 186.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Chemistry and Environmental ScienceHebei UniversityBao Ding, Hebei ProvinceChina

Personalised recommendations