Genomic and Postgenomic Technologies in Preeclampsia Genetics

Abstract

We describe the role of genomic and postgenomic technologies in the study of the preeclampsia genetic architecture in this review. Preeclampsia is a severe hypertensive disease of pregnancy that causes a significant level of maternal and perinatal morbidity and mortality. We emphasize the importance of integrative analysis of genomic, methylomic, transcriptomic, and proteomic data for characterizing the molecular mechanisms of preeclampsia, identifying new candidate genes and molecules for targeted therapy of this gestational complication.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Puzyrev, V.P., Medical pathogenetics, Vavilovskii Zh. Genet. Sel., 2014, vol. 18, no. 1, pp. 7—21.

    Google Scholar 

  2. 2

    Baranov, V.S., The evolution of predictive medicine: old ideas, new concepts, Med. Genet., 2017, vol. 16, no. 5, pp. 4—9.

    Google Scholar 

  3. 3

    Blanco-Gómez, A., Castillo-Lluva, S., del Mar Sáez-Freire, M., et al., Missing heritability of complex diseases: enlightenment by genetic variants from intermediate phenotypes, BioEssays, 2016, vol. 38, no. 7, pp. 664—673. https://doi.org/10.1002/bies.201600084

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Ailamazyan, E.K. and Mozgovaya, E.V., Gestoz: teoriya i praktika (Preeclampsia: Theory and Practice), Moscow: MEDpress-Inform, 2008.

  5. 5

    Yong, H.E.J., Murthi, P., Brennecke, S.P., and Moses, E.K., Genetic approaches in preeclampsia, Methods Mol. Biol., 2018, vol. 1710, pp. 53—72. https://doi.org/10.1007/978-1-4939-7498-6_5

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Ananth, C.V., Keyes, K.M., and Wapner, R.J., Pre-eclampsia rates in the United States, 1980—2010: age-period-cohort analysis, BMJ, 2013, no. 7, p. 347.

  7. 7

    Valenzuela, F.J., Pérez-Sepúlveda, A., Torres, M.J., et al., Pathogenesis of preeclampsia: the genetic component, J. Pregnancy, 2012, no. 1, pp. 1–8.

    Article  Google Scholar 

  8. 8

    McDonald, S.D., Best, C., and Lam, K., The recurrence risk of severe de novo pre-eclampsia in singleton pregnancies: a population-based cohort, BJOG, 2009, no. 12, pp. 1578—1584.

    CAS  Article  Google Scholar 

  9. 9

    Boyd, H.A., Tahir, H., Wohlfahrt, J., et al., Associations of personal and family preeclampsia history with the risk of early-, intermediate- and late-onset preeclampsia, Am. J. Epidemiol., 2013, no. 12, pp. 1611—1619.

  10. 10

    Lardoeyt, R., Vargas, G., Lumpuy, J., et al., Contribution of genome—environment interaction to pre-eclampsia in a Havana Maternity Hospital, MEDICC Rev., 2013, vol. 15, no. 3, pp. 22—29.

    PubMed  Google Scholar 

  11. 11

    Nilsson, E., Ros, H.S., Cnattingius, S., and Lichtenstein, P., The importance of genetic and environmental effects for pre-eclampsia and gestational hypertension: a family study, BJOG, 2004, vol. 111, no. 3, pp. 200—206.

    PubMed  Article  Google Scholar 

  12. 12

    Arngrímsson, R., Bjornsson, S., Geirsson, R., et al., Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population, Br. J. Obstet. Gynaecol., 1990, vol. 97, pp. 762—769.

    PubMed  Article  Google Scholar 

  13. 13

    Berends, A.L., Steegers, E.A., Isaacs, A., et al., Familial aggregation of preeclampsia and intrauterine growth restriction in a genetically isolated population in the Netherlands, Eur. J. Hum. Genet., 2008, vol. 16, no. 12, pp. 1437—1442.

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Lie, R., Rasmussen, S., and Brunborg, H., Fetal and matemal contributions to risk of preeclampsia: population based study, BML, 1998, vol. 316, pp. 1343—1347.

    CAS  Article  Google Scholar 

  15. 15

    Dekker, G., Robillard, P.Y., and Roberts, C., The etiology of preeclampsia: the role of the father, J. Reprod. Immunol., 2011, vol. 89, pp. 126—132.

    PubMed  Article  Google Scholar 

  16. 16

    Goddard, K.A., Tromp, G., Romero, R., et al., Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes, Hum. Hered., 2007, vol. 63, no. 1, pp. 1—16.

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Mütze, S., Rudnik-Schöneborn, S., Zerres, K., and Rath, W., Genes and the preeclampsia syndrome, J. Perinat. Med., 2008, vol. 36, no. 1, pp. 38—58.

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Fong, F.M., Sahemey, M.K., Hamedi, G., et al., Maternal genotype and severe preeclampsia: a HuGE review, Am. J. Epidemiol., 2014, vol. 180, no. 4, pp. 335—345.

    PubMed  Article  Google Scholar 

  19. 19

    Johnson, M.P., Brennecke, S.P., East, C.E., et al., Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene, PLoS One, 2012, vol. 7, no. 3. e33666

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Zhao, L., Triche, E.W., Walsh, K.M., et al., Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients, BMC Pregnancy Childbirth, 2012, vol. 29, no. 12. e61

    Article  Google Scholar 

  21. 21

    Zhao, L., Bracken, M.B., and De Wan, A.T., Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort, Ann. Hum. Genet., 2013., vol. 77, no. 4, pp. 277—287.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    McGinnis, R., Steinthorsdóttir, V., Williams, N.O., et al., Variants in the fetal genome near FLT1 are associated with risk of preeclampsia, Nat. Genet., 2017, vol. 49, no. 8, pp. 1255—1260. https://doi.org/10.1038/ng.3895

    CAS  Article  PubMed  Google Scholar 

  23. 23

    De Vivo, A., Baviera, G., Giordano, D., et al., Endoglin, PlGF and sFlt-1 as markers for predicting pre-eclampsia, Acta Obstet. Gynecol. Scand., 2008, vol. 87, no. 8, pp. 837—842.

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Sadee, W., Hartmann, K., Seweryn, M., et al., Missing heritability of common diseases and treatments outside the protein-coding exome, Hum. Genet., 2014, vol. 133, no. 10, pp. 1199—1215. https://doi.org/10.1007/s00439-014-1476-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Phipps, E.A., Thadhani, R., Benzing, T., and Karumanchi, S.A., Pre-eclampsia: pathogenesis, novel diagnostics and therapies, Nat. Rev. Nephrol., 2019, vol. 15, no. 5, pp. 275—289. https://doi.org/10.1038/s41581-019-0119-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Trifonova, E.A., Gabidulina, T.V., Ershov, N.I., et al., Analysis of the placental tissue transcriptome of normal and preeclampsia complicated pregnancies, Acta Nat., 2014, vol. 6, no. 2 (21), pp. 77—90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Enquobahrie, D.A., Meller, M., Rice, K., et al., Differential placental gene expression in preeclampsia, Am. J. Obstet. Gynecol., 2008, vol. 199, no. 5, pp. 566.e1—566.e11. https://doi.org/10.1016/j.ajog.2008.04.020

    CAS  Article  Google Scholar 

  28. 28

    Hoegh, A.M., Borup, R., Nielsen, F.C., et al., Gene expression profiling of placentas affected by preeclampsia, J. Biomed. Biotechnol., 2010, vol. 2010. https://doi.org/10.1155/2010/787545

    Article  CAS  Google Scholar 

  29. 29

    Lee, G.S., Joe, Y.S., Kim, S.J., et al., Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas, Arch. Gynecol. Obstet., 2010, vol. 282, no. 4, pp. 363—369. https://doi.org/10.1007/s00404-009-1222-x

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Meng, T., Chen, H., Sun, M., et al., Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays, OMICS, 2012, vol. 16, no. 6, pp. 301—311.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Nishizawa, H., Ota, S., Suzuki, M., et al., Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction, Reprod. Biol. Endocrinol., 2011, vol. 9, no. 107. https://doi.org/10.1186/1477-7827-9-107

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Nishizawa, H., Pryor-Koishi, K., Kato, T., et al., Microarray analysis of differentially expressed fetal genes in placental tissue derived from early and late onset severe pre-eclampsia, Placenta, 2007, vol. 28, nos. 5—6, pp. 487—497.

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Reimer, T., Koczan, D., Gerber, B., et al., Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes, Mol. Hum. Reprod., 2002, vol. 8, no. 7, pp. 674—680.

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Sitras, V., Paulssen, R.H., Gronaas, H., et al., Differential placental gene expression in severe preeclampsia, Placenta, 2009, vol. 30, no. 5, pp. 424—433. https://doi.org/10.1016/j.placenta.2009.01.012

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Várkonyi, T., Nagy, B., Füle, T., et al., Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar, Placenta, 2011, vol. 32, pp. S21—S29. https://doi.org/10.1016/j.placenta.2010.04.014

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Buimer, M., Keijser, R., Jebbink, J.M., et al., Seven placental transcripts characterize HELLP-syndrome, Placenta, 2008, vol. 29, no. 5, pp. 444—453. https://doi.org/10.1016/j.placenta.2008.02.007

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Winn, V.D., Gormley, M., and Fisher, S.J., The impact of preeclampsia on gene expression at the maternal-fetal interface, Pregnancy Hypertens., 2011, vol. 1, no. 1, pp. 100—108. https://doi.org/10.1016/j.preghy.2010.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Xiang, Y., Cheng, Y., Li, X., et al., Up-regulated expression and aberrant DNA methylation of LEP and SH3PXD2A in pre-eclampsia, PLoS One, 2013, vol. 8, no. 3. e59753. https://doi.org/10.1371/journal.pone.0059753

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Jarvenpaa, J., Vuoristo, J.T., SaVainen, E.R., et al., Altered expression of angiogenesis-related placental genes in pre-eclampsia associated with intrauterine growth restriction, Gynecol. Endocrinol., 2007, vol. 23, no. 6, pp. 351—355.

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Centlow, M., Wingren, C., Borrebaeck, C., et al., Differential gene expression analysis of placentas with increased vascular resistance and pre-eclampsia using whole-genome microarrays, J. Pregnancy, 2011, pp. 1—12. https://doi.org/10.1155/2011/472354

    Article  CAS  Google Scholar 

  41. 41

    Heikkilä, A., Tuomisto, T., Häkkinen, S.K., et al., Tumor suppressor and growth regulatory genes are overexpressed in severe early-onset preeclampsia—an array study on case-specific human preeclamptic placental tissue, Acta Obstet. Gynecol. Scand., 2005, vol. 84, no. 7, pp. 679—689.

    PubMed  Article  Google Scholar 

  42. 42

    Lapaire, O., Grill, S., Lalevee, S., et al., Microarray screening for novel preeclampsia biomarker candidates, Fetal Diagn. Ther., 2012, vol. 31, no. 3, pp. 147—153. https://doi.org/10.1159/000337325

    Article  PubMed  Google Scholar 

  43. 43

    Tsai, S., Hardison, N.E., James, A.H., et al., Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways, Placenta, 2011, vol. 32, no. 2, pp. 175—182. https://doi.org/10.1016/j.placenta.2010.11.014

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Mayor-Lynn, K., Toloubeydokhti, T., Cruz, A.C., et al., Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor, Reprod. Sci., 2011, vol. 18, no. 1, pp. 46—56. https://doi.org/10.1177/1933719110374115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Schanton, M., Maymó, J.L., Pérez-Pérez, A., et al., Involvement of leptin in the molecular physiology of the placenta, Reproduction, 2018, vol. 155, no. 1, pp. 1—12. https://doi.org/10.1530/REP-17-0512

    Article  Google Scholar 

  46. 46

    Aizawa-Abe, M., Pathophysiological role of leptin in obesity-related hypertension, J. Clin. Invest., 2000, vol. 105, pp. 1243—1252.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Fairfax, B.P., Vannberg, F.O., Radhakrishnan, J., et al., An integrated expression phenotype mapping approach defines common variants in LEP, ALOX15 and CAPNS1 associated with induction of IL-6, Hum. Mol. Genet., 2010, no. 15, pp. 720—730.

  48. 48

    Fourati, M., Mnif, M., Kharrat, N., et al., Association between leptin gene polymorphisms and plasma leptin level in three consanguineous families with obesity, Gene, 2013, no. 527, pp. 75—81.

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Ma, D., Feitosa, M.F., Wilk, J.B., et al., Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study, Hypertension, 2009, vol. 53, no. 3, pp. 473—479. https://doi.org/10.1161/HYPERTENSIONAHA.108.118133

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Vaskú, J.A., Vaskú, A., Dostálová, Z., and Bienert, P., Association of leptin genetic polymorphism-2548 G/A with gestational diabetes mellitus, Genes Nutr., 2006, vol. 1, no. 2, pp. 117—123. https://doi.org/10.1007/BF02829953

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Sugathadasa, B.H., Tennekoon, K.H., Karunanayake, E.H., et al., Association of 2548 G/A polymorphism in the leptin gene with preeclampsia/pregnancy-induced hypertension, Hypertens. Pregnancy, 2010, vol. 29, pp. 366—374.

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Liberzon, A., Birger, C., Thorvaldsdóttir, H., et al., The Molecular Signatures Database (MSigDB) hallmark gene set collection, Cell Syst., 2015, vol. 1, no. 6, pp. 417—425. https://doi.org/10.1016/j.cels.2015.12.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Yeh, C.C., Chao, K.C., and Huang, S.J., Innate immunity, decidual cells, and preeclampsia, Reprod. Sci., 2013, vol. 20, no. 4, pp. 339—353. https://doi.org/10.1177/1933719112450330

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Saftlas, A.F., Beydoun, H., and Triche, E., Immunogenetic determinants of preeclampsia and related pregnancy disorders: a systematic review, Obstet. Gynecol., 2005, vol. 106, no. 1, pp. 162—172.

    PubMed  Article  Google Scholar 

  55. 55

    Posternak, V. and Cole, M.D., Strategically targeting MYC in cancer, F1000Research, 2016, vol. 5. PMID 27081479.https://doi.org/10.12688/f1000research.7879.1

    Article  Google Scholar 

  56. 56

    Eiland, E., Nzerue, C., and Faulkner, M., Preeclampsia 2012, J. Pregnancy, 2012, vol. 2012, no. 586578. https://doi.org/10.1155/2012/586578

    Article  Google Scholar 

  57. 57

    Aul’chenko, Yu.S. and Aksenovich, T.I., Methodological approaches and strategies for mapping genes controlling complex human traits, Inf. Vestn. Vavilovskogo O-va.Genet. Sel., 2006, vol. 10, no. 1, pp. 189—202.

    Google Scholar 

  58. 58

    Hayward, C., Livingstone, J., Holloway, S., et al., An exclusion map for pre-eclampsia assuming autosomal recessive inheritance, Am. J. Hum. Genet., 1992, vol. 50, pp. 749—757.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Harrison, G.A., Humphrey, K.E., Jones, N., et al., A genome-wide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q, Am. J. Hum. Genet., 1997, vol. 60, pp. 1158—1167.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Arngrímsson, R., Sigurõardóttir, S., Frigge, M.L., et al., A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13, Hum. Mol. Genet., 1999, vol. 8, pp. 1799—1805.

    PubMed  Article  Google Scholar 

  61. 61

    Moses, E.K., Lade, J.A., Guo, G., et al., A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2, Am. J. Hum. Genet., 2000, vol. 67, pp. 1581—1585.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Lachmeijer, A.M., Dekker, G.A., Pals, G., et al., Searching for preeclampsia genes: the current position, Eur. J. Obstet. Gynecol. Reprod. Biol., 2002, vol. 5, no. 2, pp. 94—113.

    Article  Google Scholar 

  63. 63

    Laivuori, H., Lahermo, P., Ollikainen, V., et al., Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families, Am. J. Hum. Genet., 2003, vol. 72, pp. 168—177.

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Johnson, M.P., Fitzpatrick, E., Dyer, T.D., et al., Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach, Mol. Hum. Reprod., 2007, vol. 13, pp. 61—67.

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Moses, E.K., Fitzpatrick, E., Freed, K.A., et al., Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22, Mol. Hum. Reprod., 2006, vol. 12, no. 8, pp. 505—512.

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Roten, L.T., Johnson, M.P., Forsmo, S., et al., Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre-eclampsia in a large Norwegian population-based study (the HUNT study), Eur. J. Hum. Genet., 2009, vol. 17, no. 2, pp. 250—257.

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Lokki, A.I., Klemetti, M.M., Heino, S., et al., Association of the rs1424954 polymorphism of the ACVR2A gene with the risk of pre-eclampsia is not replicated in a Finnish study population, BMC Res. Notes, 2011, vol. 4, p. 545.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Vorozhishcheva, A.Yu., Trifonova, E.A., Butko, Yu.K., et al., The role of genetic variability of the ACVR2A locus in the formation of susceptibility to preeclampsia, Med. Genet., 2013, vol. 12, no. 10 (136), pp. 35—40.

  69. 69

    Glotov, A.S., Vashukova, E.S., Danilova, M.M., et al., Next generation sequencing (NGS) for the study of the ACVR2A gene in pregnant women with preeclampsia, Mol. Med., 2014, no. 5, pp. 33—40.

  70. 70

    Lachmeijer, A.M., Arngrímsson, R., Bastiaans, E.J., et al., A genome-wide scan for preeclampsia in the Netherlands, Eur. J. Hum. Genet., 2001, vol. 9, no. 10, pp. 758—764.

    CAS  PubMed  Article  Google Scholar 

  71. 71

    van Dijk, M., Mulders, J., Poutsma, A., et al., Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family, Nat. Genet., 2005, vol. 37, no. 5, pp. 514—519.

    CAS  PubMed  Article  Google Scholar 

  72. 72

    van Dijk, M. and Oudejans, C.B., STOX1: key player in trophoblast dysfunction underlying early onset preeclampsia with growth retardation, J. Pregnancy, 2010, vol. 2011, no. 521826. https://doi.org/10.1155/2011/521826

    Article  CAS  Google Scholar 

  73. 73

    Hitomi, Y. and Tokunaga, K., Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases, Proc. Jpn. Acad.,Ser. B, 2017, vol. 93, no. 9, pp. 657—676. https://doi.org/10.2183/pjab.93.042

    CAS  Article  Google Scholar 

  74. 74

    Kalayinia, S., Goodarzynejad, H., Maleki, M., and Mahdieh, N., Next generation sequencing applications for cardiovascular disease, Ann. Med., 2018, vol. 50, no. 2, pp. 91—109. https://doi.org/10.1080/07853890.2017.1392595

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Hansen, A.T., Bernth, J.M., Hvas, A.M., and Christiansen, M., The genetic component of preeclampsia: a whole-exome sequencing study, PLoS One, 2018, vol. 13, no. 5. e0197217

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76

    Melton, P.E., Johnson, M.P., Gokhale-Agashe, D., et al., Whole-exome sequencing in multiplex preeclampsia families identifies novel candidate susceptibility genes, J. Hypertens., 2019, vol. 37, no. 5, pp. 997—1011. https://doi.org/10.1097/HJH.0000000000002023

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Tsang, J.C., Vong, J.S., Ji, L., et al., Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 37, pp. E7786—E7795. https://doi.org/10.1073/pnas.1710470114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Tong, J., Zhao, W., Lv, H., et al., Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing, J. Cell Biochem., 2018, vol. 119, no. 1, pp. 607—615. https://doi.org/10.1002/jcb.26221

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Zhou, W., Wang, H., Wu, X., et al., The profile analysis of circular RNAs in human placenta of preeclampsia, Exp. Biol. Med., 2018, vol. 243, pp. 1109—1117. https://doi.org/10.1177/1535370218813525

    CAS  Article  Google Scholar 

  80. 80

    Sheridan, M.A., Yang, Y., Jain, A., et al., Early onset preeclampsia in a model for human placental trophoblast, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 10, pp. 4336—4345. https://doi.org/10.1073/pnas.1816150116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Pakin, V.S., Vashukova, E.S., Kapustin, R.V., et al., Peculiarities of placental microRNA expression in pregnancies complicated by gestational diabetes mellitus and preeclampsia, Zh. Akush. Zhen. Boleznei, 2017, vol. 66, no. 3, pp. 110—115.

    Article  Google Scholar 

  82. 82

    Timofeeva, A.V., Gusar, V.A., Kan, N.E., et al., Identification of potential early biomarkers of preeclampsia, Placenta, 2018, vol. 61, pp. 61—71. https://doi.org/10.1016/j.placenta

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Ginter, E.K., Meditsinskaya genetika (Medical Genetics), Moscow: Meditsina, 2003.

  84. 84

    Klein, C.J. and Benarroch, E.E., Epigenetic regulation: basic concepts and relevance to neurologic disease, Neurology, 2014, vol. 82, no. 20, pp. 1833—1840. https://doi.org/10.1212/WNL.0000000000000440

    Article  PubMed  Google Scholar 

  85. 85

    Wang, H., Lou, D., and Wang, Z., Crosstalk of genetic variants, allele-specific DNA methylation, and environmental factors for complex disease risk, Front. Genet., 2019, no. 9, p. 695. https://doi.org/10.3389/fgene.2018.00695

  86. 86

    Heard, E. and Martienssen, R.A., Transgenerational epigenetic inheritance: myths and mechanisms, Cell, 2014, vol. 157, no. 1, pp. 95—109. https://doi.org/10.1016/j.cell.2014.02.045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Ariff, A., Melton, P.E., Brennecke, S.P., and Moses, E.K., Analysis of the epigenome in multiplex pre-eclampsia families identifies SORD, DGKI, and ICA1 as novel candidate risk genes, Front. Genet., 2019, vol. 10, p. 227. https://doi.org/10.3389/fgene.2019.00227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Bourque, D.K., Avila, L., Peñaherrera, M., et al., Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia, Placenta, 2010, vol. 31, no. 3, pp. 197—202. https://doi.org/10.1016/j.placenta.2009.12.003

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Ruebner, M., Strissel, P.L., Ekici, A.B., et al., Reduced syncytin-1 expression levels in placental syndromes correlates with epigenetic hypermethylation of the ERVW-1 promoter region, PLoS One, 2013, vol. 8, no. 2. e56145. https://doi.org/10.1371/journal.pone.0056145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Choi, S.Y., Yun, J., Lee, O.J., et al., MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray, Placenta, 2013, vol. 34, no. 9, pp. 799—804. https://doi.org/10.1016/j.placenta.2013.06.006

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Ching, T., Song, M.A., Tiirikainen, M., et al., Genome-wide hypermethylation coupled with promoter hypomethylation in the chorioamniotic membranes of early onset pre-eclampsia, Mol. Hum. Reprod., 2014, vol. 20, no. 9, pp. 885—904. https://doi.org/10.1093/molehr/gau046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Anton, L., Brown, A.G., Bartolomei, M.S., and Elovitz, M.A., Differential methylation of genes associated with cell adhesion in preeclamptic placentas, PLoS One, 2014, vol. 9, no. 6. e100148. https://doi.org/10.1371/journal.pone.0100148

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Wang, Y., Lumbers, E.R., Arthurs, A.L., et al., Regulation of the human placental (pro)renin receptor-prorenin-angiotensin system by microRNAs, Mol. Hum. Reprod., 2018, vol. 24, no. 9, pp. 453—464. https://doi.org/10.1093/molehr/gay031

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Than, N.G., Romero, R., Tarca, A.L., et al., Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia, Front. Immunol., 2018, vol. 9, p. 1661. https://doi.org/10.3389/fimmu.2018.01661

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-44-700007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. A. Trifonova.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trifonova, E.A., Swarovskaja, M.G., Serebrova, V.N. et al. Genomic and Postgenomic Technologies in Preeclampsia Genetics. Russ J Genet 56, 513–529 (2020). https://doi.org/10.1134/S1022795420050130

Download citation

Keywords:

  • preeclampsia
  • genome-wide association studies
  • transcriptome
  • placenta
  • single nucleotide polymorphism