Skip to main content
Log in

Polymorphic Sites in ITS1-5.8S rDNA-ITS2 Region in Hybridogenic Genus × Elyhordeum and Putative Interspecific Hybrids Elymus (Poaceae: Triticeae)

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genus Elymus L. is a complicated aggregate of ecological and geographical races, species, subspecies, varieties, and hybrids. We suggest that comparative analysis of intragenomic polymorphism of internal transcribed spacers ITS1 and ITS2 of 35S rRNA genes in the supposed hybrids and their possible “parents” can be one of the approaches to verification of hybrid origin of the samples collected in nature to confirm or reject the hypotheses about their possible “parents.” Polymorphic sites (PS) in ITS of 23 Elymus species, as well as in two supposed interspecific Elymus hybrids and in a supposed intergeneric hybrid between Elymus × Hordeum determined as × Elyhordeum sp., were analyzed in the work. We collected all hybrids in the Altai. There were 2 and 5 PS in two samples of E. dahuricus and 1 and 4 PS in two studied samples of E. schrenkianus in the ITS1-5.8S rDNA-ITS2 region. From 0 to 4 (modes 0 and 3) PS were detected in 32 samples relating to 21 tetraploid Elymus species. More PS (14) were found in the × Elyhordeum sp. sample. A large number of single nucleotide substitutions were found in 5.8S rRNA in × Elyhordeum. It was shown that about half of them do not change the secondary structure of the 5.8S rRNA molecule, so these molecules probably retain the ability to work as a component of large subunit of a ribosome. On the other hand, the absence or weakening of 5.8S rDNA homogenization in × Elyhordeum indirectly suggests that a significant part of 5.8S rDNA is not transcribed. Paradoxically, ITS sequences of × Elyhordeum sp. are less polymorphic than 5.8S rDNA. There are no ITS sequences derived from Hordeum among × Elyhordeum ITS sequenced by Sanger method. No traces of the H subgenome and a subgenome originating from Agropyron (P-subgenome) are seen in the Alt 10–278 plant genome (a chimera, combining the morphological traits of Elymus, Elytrigia, and Agropyron). In this plant, as well as in the supposed intersectional hybrid Alt 11–60 distinguished by a mosaic of the traits typical for the E. caninus × E. mutabilis species, only 4 and 5 PS, respectively, are detected when sequencing by Sanger method. The comparison of ITS sequences of the supposed Elymus Alt 10–278 hybrid and its probable “parents” demonstrates that one of the species of the Elymus macrourus kinship circle, as well as the Elytrigia geniculata, could be one of its ancestors. The comparison of the ITS sequence of the supposed parental species with ITS of Alt 11–60 samples and five PS of the supposed Alt 11–60 hybrid does not contradict the hypothesis that this is an intersectional hybrid of the first generation that emerged with the involvement of E. caninus and E. mutabilis common in the Altai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soltis, P.S. and Soltis, D.E., The role of hybridization in plant speciation, Annu. Rev. Plant Biol., 2009, vol. 60, pp. 561–588.

    Article  PubMed  CAS  Google Scholar 

  2. Rodionov, A.V., Interspecific hybridization and polyploidy in the evolution of plants, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4 (2), pp. 916–929.

    Google Scholar 

  3. Wang, R. R.-C., von Bothmer, R., Dvorak, J., et al., Genome symbols in the Triticeae (Poaceae), Herbarium Publications, paper 20, 1994. http://digitalcommons.usu.edu/herbarium_pubs/20. Accessed June 16, 2017.

    Google Scholar 

  4. Agafonov, A.V., Differentiation of the genus Elymus L. (Triticeae: Poaceae) in the Asian part of Russia from the standpoint of taxonomic genetics, Sib. Bot. Zh., 2007, vol. 2, no. 1, pp. 5–15.

    Google Scholar 

  5. Agafonov, A.V., The principle of recombination (RGP) and introgression (IGP) gene pools in the biosystematics of the genus Elymus L. from Northern Eurasia, Sib. Ecol. Zh., 1997, vol. 4, no. 1, pp. 81–89.

    Google Scholar 

  6. Agafonov, A.V., Intraspecific structure and reproductive relationships between Elymus mutabilis and E. transbaicalensis (Poaceae) in Southern Siberia from the viewpoint of taxonomical genetics, Russ. J. Genet., 2004, vol. 40, no. 11, pp. 1229–1238. https://doi.org/10.1023/B:RUGE.0000048665.40740.2c.

    Article  CAS  Google Scholar 

  7. Gerus, D.E. and Agafonov, A.V., Evidence of interspecific introgression in mixed populations of Elymus komarovii, E. transbaicalensis (Triticeae: Poaceae) and some morphologically similar species of Altai Mountains, Sib. Bot. Vestn., 2007, vol. 2, no. 1, pp. 17–25.

    Google Scholar 

  8. Kobozeva, E.V., Gerus, D.E., Ovchinnikova, S.V., and Agafonov, A.V., Taxonomic interrelations between StY genomic species Elymus ciliaris and E. amurensis, Turczaninowia, 2011, vol. 14, no. 3, pp. 35–44.

    Google Scholar 

  9. Agafonov, A.V., Kobozeva, E.V., and Tatkov, S.I., Absence of genetic introgression between Elymus ciliaris and E. pendulinus (Triticeae: Poaceae) according to the results of endosperm protein SDS-electrophoresis due to the hypotheses of the origin of E. amurensis, Russ. J. Genet.: Appl. Res., 2016, vol. 6, no. 1, pp. 62–67. https://doi.org/10.1134/S2079059716010032.

    Article  Google Scholar 

  10. Lu, B.-R. and von Bothmer, R., Intergeneric hybridization between Hordeum and Asiatic Elymus, Hereditas, 1990, vol. 112, pp. 109–116.

    Article  Google Scholar 

  11. Assadi, M. and Runemark, H., Hybridization, genomic constitution and generic delimitation in Elymus s.l. (Poaceae: Triticeae), Plant Syst. Evol., 1995, vol. 194, pp. 189–205. https://doi.org/10.1007/BF00982855.

    Article  Google Scholar 

  12. Sadasivaiah, R.S. and Weijer, J., Cytogenetics of some natural intergeneric hybrids between Elymus and Agropyron species, Canad. J. Genet. Cytol., 1981, vol. 23, pp. 131–140. https://doi.org/10.1139/g81-015.

    Article  Google Scholar 

  13. Tsvelev, N.N., Zlaki SSSR (Cereals of the Soviet Union), Leningrad: Nauka, 1976.

    Google Scholar 

  14. Kotukhov, Yu.A., New species of the genus Elymus (Poaceae) from Eastern Kazakhstan, Bot. Zh., 1992, vol. 77, no. 6, pp. 89–93.

    Google Scholar 

  15. Kihara, H., Genomanalyse bei Triticum und Aegilops, Cytologia, 1930, vol. 1, pp. 263–270.

    Article  Google Scholar 

  16. Iida, K., Practice and politics in Japanese science: Hitoshi Kihara and the formation of a genetics discipline, J. Hist. Biol., 2010, vol. 43, pp. 529–570.

    Article  PubMed  Google Scholar 

  17. Komarov, V.L., Uchenie o vide u rastenii (The Doctrine of the Form in Plants), Moscow: Akad. Nauk USSR, 1944.

    Google Scholar 

  18. Zelenin, A.V., Rodionov, A.V., Bolsheva, N.L., et al., Genome: origins and evolution of the term, Mol. Biol. (Moscow), 2016, vol. 50, no. 4, pp. 542–550. https://doi.org/10.1134/S0026893316040178.

    Article  CAS  Google Scholar 

  19. Liu, Q., Ge, S., Tang, H., et al., Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences, New Phytol., 2006, vol. 170, pp. 411–420.

    Article  PubMed  CAS  Google Scholar 

  20. Mahelka, V. and Kopecky, D., Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics, Mol. Biol. Evol., 2010, vol. 27, pp. 1370–1390.

    Article  PubMed  CAS  Google Scholar 

  21. Mahelka, V., Fehrer, J., Krahulec, F., and Jarolimova, V., Recent natural hybridization between two allopolyploid wheatgrasses (Elytrigia, Poaceae): ecological and evolutionary implications, Ann. Bot., 2007, vol. 100, pp. 249–260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Efimov, S.V., Degtyareva, G.V., Terent’eva, E.I., et al., Relationship between the species Paeonia anomala, P. intermedia and P. hybrida (Paeoniaceae) according to ITS sequences of nuclear ribosomal DNA and ycf1 of chloroplast DNA, Problemy botaniki Yuzhnoi Sibiri i Mongolii (Challenges in Botany of Southern Siberia and Mongolia), Barnaul: Altaisk. Gos. Univ., 2016, pp. 112–116.

    Google Scholar 

  23. Punina, E.O., Machs, E.M., Krapivskaya, E.E., et al., Interspecific hybridization in the genus Paeonia (Paeoniaceae): polymorphic sites in transcribed spacers of the 45S rRNA genes as indicators of natural and artificial peony hybrids, Russ. J. Genet., 2012, vol. 48, no. 7, pp. 684–697. https://doi.org/10.1134/S1022795412070113.

    Article  CAS  Google Scholar 

  24. Punina, E.O., Machs, E.M., Krapivskaya, E.E., and Rodionov, A.V., Polymorphic sites in transcribed spacers of 35S rRNA genes as an indicator of origin of the Paeonia cultivars, Russ. J. Genet., 2017, vol. 53, no. 2, pp. 202–212. https://doi.org/10.1134/S1022795417010112.

    Article  CAS  Google Scholar 

  25. Hodac, L., Scheben, A.P., Hojsgaard, D., et al., ITS polymorphisms shed light on hybrid evolution in apomictic plants: a case study on the Ranunculus auricomus complex, PLoS One, 2014, vol. 9, no. 7. e103003. doi 10.1371/journal.pone.0103003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tyupa, N.B., Kim, E.S., Loskutov, I.G., and Rodionov, A.V., Origin of polyploids in the genus Avena L.: a molecular-phylogenetic study, Tr. Prikl. Bot. Genet. Sel., 2009, vol. 165, pp. 13–20.

    Google Scholar 

  27. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  28. Ridgway, K.P., Duck, J.M., and Young, J.P.W., Identification of roots from grass swards using PCR RFLP and FFLP of the plastid trnL (UAA) intron, BMC Ecol., 2003, vol. 3, p.8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. White, T.J., Bruns, T., Lee, S., and Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., San Diego: Acad. Press, 1990, pp. 315–322.

    Google Scholar 

  30. Sanger, F., Niclein, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, pp. 5463–5467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729. doi 10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 2003, vol. 31, pp. 3406–3415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vaughn, J.C., Sperbeck, S.J., Ramsey, W.J., and Lawrence, C.B., A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with 28S ribosomal RNAs, and their prokaryotic equivalent, Nucleic Acids Res., 1984, vol. 12, pp. 7479–7502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mason-Gamer, R.J., Phylogeny of a genomically diverse group of Elymus (Poaceae) allopolyploids reveals multiple levels of reticulation, PLoS One, 2013, vol. 8, no. 11. e78449. doi 10.1371/journal. pone.0078449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dizkirici, A., Kaya, Z., Cabi, E., and Dogan, M., Phylogenetic relationships of Elymus and related genera (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer sequences, Turk. J. Bot., 2010, vol. 34, pp. 467–478.

    CAS  Google Scholar 

  36. Yu, H., Fan, X., Zhang, C., et al., Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences, Biologia, 2008, vol. 63, pp. 498–505.

    Article  CAS  Google Scholar 

  37. Dong, Z.-Z., Fan, X., Sha, L.N., et al., Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes, BMC Plant Biol., 2015, vol. 15, p. 179. doi 10.1186/s12870-015-0517-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang, C., Fan, X., Yu, H.Q., et al., Phylogenetic relationships among the species of Elymus sensu lato in Triticeae (Poaceae) based on nuclear rDNA ITS sequences, Russ. J. Genet., 2009, vol. 45, no. 6, pp. 696–706.

    Article  CAS  Google Scholar 

  39. Rodionov, A.V., Dobryakova, K.S., Nosov, N.N., and Punina, E.O., The system of ribotypes of the genus Elymus (Poaceae) is not consistent with any of the systems of sections and subsections proposed by taxonomists on the basis of comparative morphological analysis, Sistematika i evolyutsionnaya morfologiya rastenii (Systematics and Evolutionary Morphology of Plants) (Proc. Conf. Dedicated to 85 Anniversary of V.N. Tikhomirov), Moscow: Maks Press, 2017, pp. 331–337.

    Google Scholar 

  40. Peshkova, G.A., ×Elyhordeum Mansf. ex Cziczin et Petrova, Flora Sibiri (Flora of Siberia) in 14 volumes, vol. 2: Poaceae (Gramineae), Malyshev, L. and Peshkova, G.A., Eds., Novosibirsk: Nauka, 1990, pp. 31–32.

  41. Kuz’mina, N.V., Natural barley–wheatgrass hybrids at the Pamir, Extended Abstract of Cand. Sci. Dissertation, Pamir. Boil. Stn., Dushanbe, 1965.

    Google Scholar 

  42. Probatova, N.S., Annotated list of chromosome numbers in species of the Poaceae family from the Russian Far East, Komarov Readings, 2007, issue 55, pp. 53–103.

    Google Scholar 

  43. Shmakov, N.A., Afonnikov, D.A., Belavin, P.A., and Agafonov, A.V., The suitability of the bmy2 and waxy genes and internaltranscribed spacers of rRNA as markers for studying genetic variability in Elymus species, Russ. J. Genet.: Appl. Res., 2015, vol. 5. no. 3, pp. 300–307. https://doi.org/10.1134/S207905971503017X.

    Article  CAS  Google Scholar 

  44. Wang, X., Fan, X., Zhang, C., et al., Phylogeny of species with the StH genome in Triticeae (Poaceae) inferred from nuclear rDNA ITS sequences, Acta Pratacult. Sin., 2009, vol. 18, no. 6, pp. 82–90.

    CAS  Google Scholar 

  45. Plant Inventrory, Norris, R.A., Ed., no. 202, part 1: Plant Materials Introduced January 1 to March 31, 1993, nos. 564686–566903, U.S. Dept. Agric., 1994, p.71.

  46. Wendel, J.F., Schnabel, A., and Seelanan, T., Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium), Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 280–284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mukha, D.V., Mysina, V., Mavropulo, V., and Schal, C., Structure and molecular evolution of the ribosomal DNA external transcribed spacer in the cockroach genus Blattella, Genome, 2011, vol. 54, pp. 222–234. doi 10.1139/G10–112

    Article  PubMed  CAS  Google Scholar 

  48. Rodionov, A.V., Gnutikov, A.A., Kotsinyan, A.R., et al., ITS1–5.8S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae family), Biol. Bull. Rev., 2017, vol. 7, no. 2, pp. 85–102. https://doi.org/10.1134/S2079086417020062.

    Article  Google Scholar 

  49. Kovarik, A., Pires, J.C., Leitch, A.R., et al., Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin, Genetics, 2005, vol. 169, pp. 931–944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Naidoo, K., Steenkamp, E.T., Coetzee, M.P., et al., Concerted evolution in the ribosomal RNA cistron, PLoS One, 2013, vol. 8. e59355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kotseruba, V., Gernand, D., Meister, A., and Houben, A., Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8), Genome, 2003, vol. 46, pp. 156–163.

    Article  PubMed  CAS  Google Scholar 

  52. Ritossa, F.M., Unstable redundancy of genes for ribosomal RNA, Proc. Natl. Acad. Sci. U.S.A., 1968, vol. 60, pp. 509–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Navashin, M., Chromosomal alterations caused by hybridization and their bearing upon general genetic problems, Cytologia, 1934, vol. 5, pp. 169–203.

    Article  Google Scholar 

  54. Kovarik, A., Dadejova, M., Lim, Y.K., et al., Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics, Ann. Bot., 2008, vol. 101, pp. 815–823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ritland, C. and Straus, N.A., High evolutionary divergence of the 5.8S ribosomal DNA in Mimulus glaucescens (Scrophulariaceae), Plant Mol. Biol., 1993, vol. 22, pp. 691–696.

    Article  PubMed  CAS  Google Scholar 

  56. Mahelka, V., Krak, K., Kopecký, D., et al., Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, pp. 1726–1731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Beardsley, P.M., Schoenig, S.E., Whittal, J.B., and Olmstead, R.G., Patterns of evolution in western North American Mimulus (Phrymaceae), Am. J. Bot., 2004, vol. 91, pp. 474–489.

    Article  PubMed  CAS  Google Scholar 

  58. Nei, M., Gu, X., and Sitnikova, T., Evolution by the birth-and-death process in multigene families of the vertebrate immune system, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 7799–7809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tsvelev, N.N. and Probatova, N.S., Genera Elymus L., Elytrigia Desv., Agropyron Gaertn., Psathyrostachys Nevski, and Leymus Hochst. (Poaceae: Triticeae) in the flora of Russia, Komarov Readings, 2010, issue 57, pp. 5–102.

    Google Scholar 

  60. Agafonov, A.V., Biosystematic study of the Elymus macrourus–E. jacutensis complex and the critical taxon E. ircutensis (Triticeae: Poaceae), Rastit. Mir Aziat. Rossii, 2008, no. 2. pp. 20–32.

    Google Scholar 

  61. Gao, G., Deng, J., Gou, X., et al., Phylogenetic relationships among Elymus and related diploid genera (Triticeae: Poaceae) based on nuclear rDNA ITS sequences, Biologia, 2015, vol. 70, no. 2, pp. 183–189.

    Article  Google Scholar 

  62. Dewey, D.R., The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae, in Gene Manipulation in Plant Improvement, Gustafson, J.P., Ed., New York: Plenum, 1984, pp. 209–279.

    Chapter  Google Scholar 

  63. Salomon, B., Interspecific hybridizations in the Elymus semicostatus group (Poaceae), Genome, 1993, vol. 36, pp. 899–905.

    Article  PubMed  CAS  Google Scholar 

  64. Jensen, K.B. and Hatch, S.L., Genome analysis, morphology, and taxonomy of Elymus gmelinii and E. strictus (Poaceae: Triticeae), Bot. Gaz., 1989, vol. 150, pp. 84–92.

    Article  Google Scholar 

  65. Agafonov, A.V., Salomon, B., Kostina, E.V., and Diaz, O., Biosystematic relationships between Elymus komarovii (Nevski) Tzvel. and related species, Triticeae III, Jaradat, A.A., Ed., Enfield, New Hampshire: Science Publishers, 1998, pp. 77–84.

    Google Scholar 

  66. Probatova, N.S., Barkalov, V.Yu., and Agafonov, A.V., Chromosome numbers of some cereals (Poaceae) of Russian flora, Uch. Zap. Zabaikal. Gos. Univ., 2017, vol. 12, no. 1, pp. 88–95.

    Google Scholar 

  67. Kobozeva, E.V. and Agafonov, A.V., Revision of the Pendulini (Nevski) Tzvelev subsection of the genus Elymus L. (Poaceae), Sist. Zametki Mater. Herb. im. P.N. Krylova Tomsk. Gos. Univ., 2015, no. 12, pp. 22–31.

    Google Scholar 

  68. Probatova, N.S., Kazarnovskii, S.G., Barkalov, V.Yu., et al., Chromosome numbers of some cereals (Poaceae) of Russian flora, Bot. Zh., 2013, vol. 98, no. 2, pp. 255–268.

    Google Scholar 

  69. Kobozeva, E.V., Gerus, D.E., Ovchinnikova, S.V., and Agafonov, A.V., Taxonomic relationships between StY genomic species, Elymus ciliaris and E. amurensis (Poaceae), Turczaninowia, 2011, vol. 14, no. 3, pp. 35–44.

    Google Scholar 

  70. Probatova, N.S., Kozhevnikova, Z.V., Rudyka, E.G., et al., Chromosome numbers of vascular plants from the Russian Far East, Bot. Zh., 2010, vol. 95, no. 7, pp. 1008–1020.

    Google Scholar 

  71. Dewey, D.R., Synthetic Agropyron–Elymus hybrids: 3. Elymus canadensis × Agropyron caninum, A. trachycaulum and A. striatum, Am. J. Bot., 1968, vol. 55, pp. 1133–1139.

    Article  Google Scholar 

  72. Gerus, D.E. and Agafonov, A.V., Endosperm proteins are markers of interspecies introgression among mixed populations Elymus komarovii, E. transbaicalensis, E. sajanensis, and E. “kronokensis” (Triticeae: Poaceae) in the Eastern Sayan, Sib. Bot. Vestn., 2007, vol. 2, no. 2, pp. 33–42. http://journal.csbg.ru.

    Google Scholar 

  73. Probatova, N.S., Barkalov, V.Yu., and Rudyka, E.G., Chromosome numbers for vascular plants from Sakhalin, Moneron and the Kuril Islands (North-East Asia), Bot. Pacifica, 2012, vol. 1, no. 1, pp. 121–126.

    Article  Google Scholar 

  74. Zuo, H., Wu, P., Wu, D., and Sun, G., Origin and reticulate evolutionary process of wheatgrass Elymus trachycaulus (Triticeae: Poaceae), PLoS One, 2015. doi 10.1371/journal.pone.01254

    Google Scholar 

  75. Agafonov, A.V., Kobozeva, E.V., Asbaganov, S.V., and Shmakov, N.A., Current progress and perspectives in the construction of a phylogenetically oriented system of taxa of the genus Elymus (Poaceae: Triticeae), Problemy botaniki Yuzhnoi Sibiri i Mongolii (Challenges in Botany of Southern Siberia and Mongolia) (Proc. Conf.), Barnaul: Altaisk Gos. Univ., 2015, pp. 314–322.

    Google Scholar 

  76. Lu, B.R., Biosystematic investigations of Asiatic wheatgrasses–Elymus L. (Triticeae: Poaceae), Alnarp, 1993, pp. 1–57.

    Google Scholar 

  77. Probatova, N.S. and Sokolovskaya, A.P., Synopsis of the Poaceae chromosome numbers of the Soviet Far East: 1. Tribes Oryzeae, Brachypodieae, Triticeae, Bot. Zh., 1982, vol. 67, no. 1, pp. 62–70.

    Google Scholar 

  78. Lu, B.R. and von Bothmer, R., Interspecific hybridization between Elymus himalayanus and E. schrenkianus and other Elymus species (Triticeae: Poaceae), Genome, 1992, vol. 35, pp. 230–237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rodionov.

Additional information

Original Russian Text © A.V. Rodionov, K.S. Dobryakova, E.O. Punina, 2018, published in Genetika, 2018, Vol. 54, No. 9, pp. 999–1014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, A.V., Dobryakova, K.S. & Punina, E.O. Polymorphic Sites in ITS1-5.8S rDNA-ITS2 Region in Hybridogenic Genus × Elyhordeum and Putative Interspecific Hybrids Elymus (Poaceae: Triticeae). Russ J Genet 54, 1025–1039 (2018). https://doi.org/10.1134/S1022795418090120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418090120

Keywords

Navigation