Advertisement

Russian Journal of Genetics

, Volume 54, Issue 5, pp 499–513 | Cite as

Random Priming PCR Strategies for Identification of Multilocus DNA Polymorphism in Eukaryotes

  • B. R. Kuluev
  • An. Kh. Baymiev
  • G. A. Gerashchenkov
  • D. A. Chemeris
  • V. V. Zubov
  • A. R. Kuluev
  • Al. Kh. Baymiev
  • A. V. Chemeris
Reviews and Theoretical Articles
  • 26 Downloads

Abstract

A historical review of the advent and improvement of the methods for detecting multilocus DNA polymorphism that do not require preliminary knowledge of the individual gene and complete genome sequences of eukaryotes is presented. The first group of these methods includes approaches based on the use of primers with arbitrary sequence (random priming). Another group of methods to detect DNA polymorphism is based on the use of primers that consist of short repetitive sequences having anchor nucleotides at the 5'- or 3'-ends that position the annealing sites of these primers (microsatellite priming). Another approach for revealing polymorphism that does not require knowledge of the DNA sequence is based on cleavage of total DNA by a combination of restriction endonucleases (random cleavage) accompanied by PCR amplification. Considerable attention is paid to the opportunities of using these approaches to detect DNA polymorphism in the form of converting the obtained data to digital format and creation of integrative databases for all organisms, regardless of the methods used.

Keywords

DNA polymorphism PCR primers RAPD DAF AP-PCR AFLP ISSR UP-PCR gel electrophoresis amplicon DNA fragment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chemeris, D.A., Kir’yanova, O.Yu., Gubaidullin, I.M., and Chemeris, A.V., Design of primers for polymerase chain reaction (brief review of software and databases), Biomika, 2016, vol. 8, pp. 215–238.Google Scholar
  2. 2.
    Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M., DNA fingerprinting: MAAPing out a RAPD redefinition?, Bio/Technology, 1992, vol. 10, no. 2, p. 937. doi 10.1038/nbt0992-937bGoogle Scholar
  3. 3.
    Caetano-Anollés, G., MAAP: a versatile and universal tool for genome analysis, Plant Mol. Biol., 1994, vol. 25, pp. 1011–1026.CrossRefPubMedGoogle Scholar
  4. 4.
    Williams, J.G., Kubelik, A.R., Livak, K.J., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res., 1990, vol. 18, pp. 6531–6535.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gillings, M. and Holley, M., Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation, Electrophoresis, 1997, vol. 18, pp. 1512–1518.CrossRefPubMedGoogle Scholar
  6. 6.
    Wesley, C.S., Ben, M., Kreitman, M., et al., Cloning regions of the Drosophila genome by microdissection of polytene chromosome DNA and PCR with nonspecific primer, Nucleic Acids Res., 1990, vol. 18, pp. 599–603.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chapco, W., Theoretical limits on the number of electrophoretic fragments generated by the Random Amplified Polymorphic DNA method, Hereditas, 1995, vol. 122, pp. 179–180.CrossRefGoogle Scholar
  8. 8.
    Welsh, J. and McClelland, M., Fingerprinting genomes using PCR with arbitrary primers, Nucleic Acids Res., 1990, vol. 18, pp. 7213–7218.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bulat, S.A. and Mironenko, N.V., Species identity of the phytopathogenic fungi Pyrenophora teres Drechler and P. graminea Ito et Kuribayashi, Mikol. Fitopatol., 1990, vol. 24, pp. 435–440.Google Scholar
  10. 10.
    Desmarais, E., Lanneluc, I., and Lagnel, J., Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species, Nucleic Acids Res., 1998, vol. 26, pp. 1458–14565.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M., DNA amplification fingerprinting using very short arbitrary oligonucleotide primers, Biotechnology, 1991, vol. 9, pp. 553–557.PubMedGoogle Scholar
  12. 12.
    Caetano-Anollés, G. and Gresshoff, P.M., DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers, Biotechnology, 1994, vol. 12, pp. 19–23.Google Scholar
  13. 13.
    Jian, L., Zhang, Y.Z., Yu, D.F., and Zhu, L.Q., Molecular characterization of Cymbidium kanran cultivars based on extended random amplified polymorphic DNA (ERAPD) markers, Afr. J. Biotechnol., 2010, vol. 9, pp. 5084–5089.Google Scholar
  14. 14.
    Micheli, M.R., Bova, R., Calissano, P., and D’Ambrosio, E., Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers, Biotechniques, 1993, vol. 15, pp. 388–390.PubMedGoogle Scholar
  15. 15.
    Hu, J., van Eysden, J., and Quiros, C.F., Generation of DNA-based markers in specific genome regions by two-primer RAPD reactions, PCR Methods Appl., 1995, vol. 4, pp. 346–351.CrossRefPubMedGoogle Scholar
  16. 16.
    Sall, T., Lind-Hallden, C., and Hallden, C., Primer mixtures in RAPD analysis, Hereditas, 2000, vol. 132, pp. 203–208.CrossRefPubMedGoogle Scholar
  17. 17.
    Gatphoh, E.M., Sharma, S.K., Rajkumari, K., and Rama Rao, S., Efficacy of random primer-pair arrays in plant genome analysis: a case study of Cucumis (Cucurbitaceae) for identification of wild and cultivated species, Genet. Mol. Res., 2011, vol. 10, pp. 1416–1426.CrossRefPubMedGoogle Scholar
  18. 18.
    Welsh, J. and McClelland, M., Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers, Nucleic Acids Res., 1991, vol. 19, pp. 5275–5279.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sakallah, S.A., Lanning, R.W., and Cooper, D.L., DNA fingerprinting of crude bacterial lysates using degenerate RAPD primers, PCR Methods Appl., 1995, vol. 4, pp. 265–268.CrossRefPubMedGoogle Scholar
  20. 20.
    Comeau, A.M., Short, S., and Suttle, C.A., The use of degenerate-primed random amplification of polymorphic DNA (DP-RAPD) for strain-typing and inferring the genetic similarity among closely related viruses, J. Virol. Methods, 2004, vol. 118, pp. 95–100.CrossRefPubMedGoogle Scholar
  21. 21.
    Li, J.J., Pei, G.L., Pang, H.X., et al., A new method for RAPD primers selection based on primer bias in nucleotide sequence data, J. Biotechnol., 2006, vol. 126, pp. 415–423.CrossRefPubMedGoogle Scholar
  22. 22.
    Lorenz, M., Weihe, A., and Borner, T., DNA fragments of organellar origin in random amplified polymorphic DNA (RAPD) patterns of sugar beet (Beta vulgaris L.), Theor. Appl. Genet., 1994, vol. 88, pp. 775–779.CrossRefPubMedGoogle Scholar
  23. 23.
    Penner, G.A., Bush, A., Wise, R., et al., Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories, PCR Methods Appl., 1993, vol. 2, pp. 341–345.CrossRefPubMedGoogle Scholar
  24. 24.
    Saunders, G.C., Dukes, J., Parkes, H.C., and Cornett, J.H., Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses, Clin. Chem., 2001, vol. 47, pp. 47–55.PubMedGoogle Scholar
  25. 25.
    Ramos, J.R., Telles, M.P., Diniz-Filho, J.A., et al., Optimizing reproducibility evaluation for random amplified polymorphic DNA markers, Genet. Mol. Res., 2008, vol. 7, pp. 1384–1391.CrossRefPubMedGoogle Scholar
  26. 26.
    Pan, Y.B., Burner, D.M., Ehrlich, K.C., et al., Analysis of primer-derived, nonspecific amplification products in RAPD-PCR, Biotechniques, 1997, vol. 22, pp. 1071–1077.PubMedGoogle Scholar
  27. 27.
    Caetano-Anollés, G., Amplifying DNA with arbitrary oligonucleotide primers, PCR Methods Appl., 1993, vol. 3, pp. 85–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Skroch, P. and Nienhuis, J., Impact of scoring error and reproducibility RAPD data on RAPD based estimates of genetic distance, Theor. Appl. Genet., 1995, vol. 91, pp. 1086–1091.PubMedGoogle Scholar
  29. 29.
    Venugopal, G., Mohapatra, S., Salo, D., and Mohapatra, S., Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting, Biochem. Biophys. Res. Commun., 1993, vol. 197, pp. 1382–1387.CrossRefPubMedGoogle Scholar
  30. 30.
    Oakey, H.J., Gibson, L.F., and George, A.M., Comigration of RAPD-PCR amplicons from Aeromonas hydrophila, FEMS Microbiol. Lett., 1998, vol. 164, pp. 35–38.CrossRefPubMedGoogle Scholar
  31. 31.
    Valentini, A., Timperio, A.M., Cappuccio, I., and Zolla, L., Random amplified polymorphic DNA (RAPD) interpretation requires a sensitive method for the detection of amplified DNA, Electrophoresis, 1996, vol. 17, pp. 1553–1554.CrossRefPubMedGoogle Scholar
  32. 32.
    He, S., Ohm, H., and Mackenzie, S., Detection of DNA sequence polymorphisms among wheat varieties, Theor. Appl. Genet., 1992, vol. 84, pp. 573–578.PubMedGoogle Scholar
  33. 33.
    McClelland, M., Arensdorf, H., Cheng, R., and Welsh, J., Arbitrarily primed PCR fingerprints resolved on SSCP gels, Nucleic Acids Res., 1994, vol. 22, pp. 1770–1771.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Penner, G.A. and Bezte, L.J., Increased detection of polymorphism among randomly amplified wheat DNA fragments using a modified temperature sweep gel electrophoresis (TSGE) technique, Nucleic Acids Res., 1994, vol. 22, pp. 1780–1781.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Penner, G.A., Lee, S.J., Bezte, L.J., and Ugali, E., Rapid RAPD screening of plant DNA using dot blot hybridization, Mol. Breed., 1996, vol. 2, pp. 7–10.CrossRefGoogle Scholar
  36. 36.
    Grundmann, H., Schneider, C., Tichy, H.V., et al., Automated laser fluorescence analysis of randomly amplified polymorphic DNA: a rapid method for investigating nosocomial transmission of Acinetobacter baumannii, J. Med. Microbiol., 1995, vol. 43, pp. 446–451.CrossRefPubMedGoogle Scholar
  37. 37.
    Corley-Smith, G.E., Lim, C.J., Kalmar, G.B., and Brandhorst, B.P., Efficient detection of DNA polymorphisms by fluorescent RAPD analysis, Biotechniques, 1997, vol. 22, pp. 690–699.PubMedGoogle Scholar
  38. 38.
    Leamon, J.H., Moiseff, A., and Crivello, J.F., Development of a high-throughput process for detection and screening of genetic polymorphisms, Biotechniques, 2000, vol. 28, pp. 994–1005.PubMedGoogle Scholar
  39. 39.
    Schlipalius, D.I., Waldron, J., Carroll, B.J., et al., A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects, Insect Mol. Biol., 2001, vol. 10, pp. 579–585.CrossRefPubMedGoogle Scholar
  40. 40.
    Waldron, J., Peace, C.P., Searle, I.R., et al., Randomly amplified DNA fingerprinting: a culmination of DNA marker technologies based on arbitrarily-primed PCR amplification, J. Biomed. Biotechnol., 2002, vol. 2, pp. 141–150.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chang, A., Liew, W.C., Chuah, A., et al., FluoMEP: a new genotyping method combining the advantages of randomly amplified polymorphic DNA and amplified fragment length polymorphism, Electrophoresis, 2007, vol. 28, pp. 525–534.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei, C.L., Cheng, J.L., Khan, M.A., et al., An improved DNA marker technique for genetic characterization using RAMP-PCR with high-GC primers, Genet. Mol. Res., 2016, vol. 15.Google Scholar
  43. 43.
    Schweder, M.E., Shatters, R.G., West, S.H., and Smith, R.L., Effect of transition interval between melting and annealing temperatures on RAPD analyses, Biotechniques, 1995, vol. 19, pp. 38–42.PubMedGoogle Scholar
  44. 44.
    Kubelik, A.R. and Szabo, L.J., High-GC primers are useful in RAPD analysis of fungi, Curr. Genet., 1995, vol. 28, pp. 384–389.CrossRefPubMedGoogle Scholar
  45. 45.
    Paran, I. and Michelmore, R.W., Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce, Theor. Appl. Genet., 1993, vol. 85, pp. 985–993.CrossRefPubMedGoogle Scholar
  46. 46.
    Monna, L., Miyao, A., Inoue, T., et al., Determination of RAPD markers in rice and their conversion into sequence tagged sites (STSs) and STS-specific primers, DNA Res., 1994, vol. 1, pp. 139–148.CrossRefPubMedGoogle Scholar
  47. 47.
    Mondon, P., Brenier, M.P., Symoens, F., et al., Molecular typing of Aspergillus fumigatus strains by sequence-specific DNA primer (SSDP) analysis, FEMS Immunol. Med. Microbiol., 1997, vol. 17, pp. 95–102.CrossRefPubMedGoogle Scholar
  48. 48.
    Premkrishnan, B.V. and Arunachalam, V., In silico RAPD priming sites in expressed sequences and iSCAR markers for oil palm, Comp. Funct. Genomics, 2012, 913709.Google Scholar
  49. 49.
    Vos, P., Hogers, R., Bleeker, M., et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 1995, vol. 23, pp. 4407–4414.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Reineke, A. and Karlovsky, P., Simplified AFLP protocol: replacement of primer labeling by the incorporation of alpha-labeled nucleotides during PCR, Biotechniques, 2000, vol. 28, pp. 622–623.PubMedGoogle Scholar
  51. 51.
    Chalhoub, B.A., Thibault, S., Laucou, V., et al., Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels, Biotechniques, 1997, vol. 22, pp. 216–220.PubMedGoogle Scholar
  52. 52.
    Lin, J.J., Ma, J., and Kuo, J., Chemiluminescent detection of AFLP markers, Biotechniques, 1999, vol. 26, pp. 344–348.PubMedGoogle Scholar
  53. 53.
    Desai, M., Tanna, A., Wall, R., et al., Fluorescent amplified-fragment length polymorphism analysis of an outbreak of group A streptococcal invasive disease, J. Clin. Microbiol., 1998, vol. 36, pp. 3133–3137.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Papa, R., Troggio, M., Ajmone-Marsan, P., and Nonnis Marzano, F., An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis, J. Anim. Breed. Genet., 2005, vol. 122, pp. 62–68.CrossRefPubMedGoogle Scholar
  55. 55.
    Myburg, A.A., Remington, D.L., O’Malley, D.M., et al., High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer, Biotechniques, 2001, vol. 30, pp. 348–357.PubMedGoogle Scholar
  56. 56.
    Suazo, A. and Hall, H.G., Modification of the AFLP protocol applied to honey bee (Apis mellifera L.) DNA, Biotechniques, 1999, vol. 26, pp. 704–708.PubMedGoogle Scholar
  57. 57.
    Ranamukhaarachchi, D.G., Kane, M.E., Guy, C.L., and Li, Q.B., Modified AFLP technique for rapid genetic characterization in plants, Biotechniques, 2000, vol. 29, pp. 858–862.PubMedGoogle Scholar
  58. 58.
    Han, T.H., van Eck, H.J., De Jeu, M.J., and Jacobson, E., Optimization of AFLP fingerprinting of organisms with a large-sized genome: a study on Alstroemeria spp., Theor. Appl. Genet., 1999, vol. 98, pp. 465–471.CrossRefGoogle Scholar
  59. 59.
    Fay, M.F., Cowan, R.S., and Leitch, I.J., The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints, Ann. Bot., 2005, vol. 95, pp. 237–246.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vesela, P., Volarik, D., and Mracek, J., Optimization of AFLP for extremely large genomes over 70 Gb, Mol. Ecol. Resour., 2016, vol. 16, pp. 933–945.CrossRefPubMedGoogle Scholar
  61. 61.
    Guan, L. and Shiraishi, S., Improved AFLP protocol using dual-suppression PCR and its application to species with large genomes, Mol. Ecol. Resour., 2011, vol. 11, pp. 854–861.CrossRefPubMedGoogle Scholar
  62. 62.
    van Der Wurff, A.W., Chan, Y.L., van Straalen, N.M., and Schouten, J., TE-AFLP: combining rapidity and robustness in DNA fingerprinting, Nucleic Acids Res., 2000, vol. 28. E105CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lan, R. and Reeves, P.R., Unique adaptor design for AFLP fingerprinting, Biotechniques, 2000, vol. 29, pp. 745–750.PubMedGoogle Scholar
  64. 64.
    Jones, C.J., Edwards, K.J., Castaglione, S., et al., Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories, Mol. Breed., 1997, vol. 3, pp. 381–390.Google Scholar
  65. 65.
    Partis, L., Burns, M., Chiba, K., et al., A study of comparability in amplified fragment length polymorphism profiling using a simple model system, Electrophoresis, 2007, vol. 28, pp. 3193–3200.CrossRefPubMedGoogle Scholar
  66. 66.
    Peters, J.L., Constandt, H., Neyt, P., et al., A physical amplified fragment-length polymorphism map of Arabidopsis, Plant Physiol., 2001, vol. 127, pp. 1579–1589.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Caballero, A. and Quesada, H., Homoplasy and distribution of AFLP fragments: an analysis in silico of the genome of different species, Mol. Biol. Evol., 2010, vol. 27, pp. 1139–1151.CrossRefPubMedGoogle Scholar
  68. 68.
    Caballero, A., Garcia-Pereira, M.J., and Quesada, H., Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species, BMC Genomics, 2013, vol. 14.Google Scholar
  69. 69.
    Rombauts, S., Van De Peer, Y., and Rouze, P., AFLPinSilico, simulating AFLP fingerprints, Bioinformatics, 2003, vol. 19, pp. 776–777.CrossRefPubMedGoogle Scholar
  70. 70.
    Donini, P., Koebner, R.M., Elias, M.L., and Bougourd, S.M., AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs, Genome, 1997, vol. 40, pp. 521–526.CrossRefPubMedGoogle Scholar
  71. 71.
    Ashikawa, I., Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars, Plant Mol. Biol., 2001, vol. 45, pp. 31–39.CrossRefPubMedGoogle Scholar
  72. 72.
    Knox, M.R. and Ellis, T.H., Stability and inheritance of methylation states at PstI sites in Pisum, Mol. Genet. Genomics, 2001, vol. 265, pp. 497–507.CrossRefPubMedGoogle Scholar
  73. 73.
    Yamamoto, F., Yamamoto, M., Soto, J.L., et al., NotIMseI methylation-sensitive amplified fragment length polymorphism for DNA methylation analysis of human cancers, Electrophoresis, 2001, vol. 22, pp. 1946–1956.CrossRefPubMedGoogle Scholar
  74. 74.
    Yamamoto, F. and Yamamoto, M., A DNA microarray- based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses, Mol. Genet. Genomics, 2004, vol. 271, pp. 678–686.CrossRefPubMedGoogle Scholar
  75. 75.
    Kageyama, S., Shinmura, K., Yamamoto, H., et al., Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status, Jpn. J. Clin. Oncol., 2008, vol. 38, pp. 317–322.CrossRefPubMedGoogle Scholar
  76. 76.
    Perez-Figueroa, A., msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data, Mol. Ecol. Resour., 2013, vol. 13, pp. 522–527.CrossRefPubMedGoogle Scholar
  77. 77.
    Aiba, T., Saito, T., Hayashi, A., et al., Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles, BMC Mol. Biol., 2017, vol. 18.Google Scholar
  78. 78.
    Meksem, K., Ruben, E., Hyten, D., et al., Conversion of AFLP bands into high-throughput DNA markers, Mol. Genet. Genomics, 2001, vol. 265, pp. 207–214.CrossRefPubMedGoogle Scholar
  79. 79.
    Brugmans, B., van der Hulst, R.G., Visser, R.G., et al., A new and versatile method for the successful conversion of AFLP markers into simple single locus markers, Nucleic Acids Res., 2003, vol. 31. e55CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, pp. 176–183.CrossRefPubMedGoogle Scholar
  81. 81.
    Salimath, S.S., de Oliveira, A.C., Godwin, I.D., and Bennetzen, J.L., Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers, Genome, 1995, vol. 38, pp. 757–763.CrossRefPubMedGoogle Scholar
  82. 82.
    Hantula, J., Dusabenyagasani, M., and Hamelin, R.C., Random amplified microsatellites (RAMS)—a novel method for characterizing genetic variation within fungi, Eur. J. For. Path., 1996, vol. 26, pp. 159–166.CrossRefGoogle Scholar
  83. 83.
    Charters, Y.M., Robertson, A., Wilkinson, M.J., and Ramsay, G., PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers, Theor. Appl. Genet., 1996, vol. 92, pp. 442–447.CrossRefPubMedGoogle Scholar
  84. 84.
    Wiesner, I., Wiesnerova, D., and Tejklova, E., Effect of anchor and core sequence in microsatellite primers on flax fingerprinting patterns, J. Agr. Sci. (Cambridge), 2001, vol. 137, pp. 37–44.CrossRefGoogle Scholar
  85. 85.
    Wiesner, I. and Wiesnerova, D., Insertion of a reamplification round into the ISSR-PCR protocol gives new flax fingerprinting patterns, Cell Mol. Biol. Lett., 2003, vol. 8, pp. 743–748.PubMedGoogle Scholar
  86. 86.
    Wang, X.L., Yang, R.H., and Yao, Y.J., Development of microsatellite markers for Ophiocordyceps sinensis (Ophiocordycipitaceae) using an ISSR-TAIL-PCR method, Am. J. Bot., 2011, vol. 98. e391-4CrossRefPubMedGoogle Scholar
  87. 87.
    Godwin, I.D., Aitken, E.A., and Smith, L.W., Application of inter simple sequence repeat (ISSR) markers to plant genetics, Electrophoresis, 1997, vol. 18, pp. 1524–1528.CrossRefPubMedGoogle Scholar
  88. 88.
    Kumar, L.D., Kathirvel, M., Rao, G.V., and Nagaraju, J., DNA profiling of disputed chili samples (Capsicum annum) using ISSR-PCR and FISSR-PCR marker assays, Forensic Sci. Int., 2001, vol. 116, pp. 63–68.CrossRefPubMedGoogle Scholar
  89. 89.
    Albani, M.C., Battey, N.H., and Wilkinson, M.J., The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca, Theor. Appl. Genet., 2004, vol. 109, pp. 571–579.CrossRefPubMedGoogle Scholar
  90. 90.
    Lian, C.L., Abdul Wadud, M., Geng, Q., et al., An improved technique for isolating codominant compound microsatellite markers, J. Plant Res., 2006, vol. 119, pp. 415–417.CrossRefPubMedGoogle Scholar
  91. 91.
    Gupta, M., Chyi, Y.S., Romero-Severson, J., and Owen, J.L., Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple- sequence repeats, Theor. Appl. Genet., 1994, vol. 89, pp. 998–1006.PubMedGoogle Scholar
  92. 92.
    Hayden, M.J., Stephenson, P., Logojan, A.M., et al., A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs, Theor. Appl. Genet., 2004, vol. 108, pp. 733–742.CrossRefPubMedGoogle Scholar
  93. 93.
    Perring, T.M., Cooper, A.D., Rodriguez, R.J., et al., Identification of a whitefly species by genomic and behavioral studies, Science, 1993, vol. 259, pp. 74–77.CrossRefPubMedGoogle Scholar
  94. 94.
    Bornet, B. and Branchard, M., Nonanchored Inter Simple Sequence Repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting, Plant Mol. Biol. Rep., 2001, vol. 19, pp. 209–215.CrossRefGoogle Scholar
  95. 95.
    D’Ovidio, R., Tanzarella, O.A., and Porceddu, E., Rapid and efficient detection of genetic polymorphism in wheat through amplification by polymerase chain reaction, Plant Mol. Biol., 1990, vol. 15, pp. 169–171.CrossRefPubMedGoogle Scholar
  96. 96.
    Nybom, H., Weising, K., and Rotter, B., DNA fingerprinting in botany: past, present, future, Invest. Genet., 2014, vol. 5.Google Scholar
  97. 97.
    Vester, B., Lundberg, L.B., Sorensen, M.D., et al., Improved RNA cleavage by LNAzyme derivatives of DNAzymes, Biochem. Soc. Trans., 2004, vol. 32, pp. 37–40.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • B. R. Kuluev
    • 1
  • An. Kh. Baymiev
    • 1
  • G. A. Gerashchenkov
    • 1
  • D. A. Chemeris
    • 1
  • V. V. Zubov
    • 1
  • A. R. Kuluev
    • 1
  • Al. Kh. Baymiev
    • 1
  • A. V. Chemeris
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations