Russian Journal of Genetics

, Volume 54, Issue 5, pp 514–524 | Cite as

Detection and Genetic Characterization of Bacteria of the Genus Pseudomonas from Microbial Communities of Lake Baikal

  • N. L. Bel’kova
  • E. V. Dzyuba
  • E. S. Klimenko
  • I. V. Khanaev
  • N. N. Denikina
Genetics of Microorganisms
  • 2 Downloads

Abstract

The genus Pseudomonas is one of the most diverse and ecologically important groups of bacteria. Numerous representatives of the genus are found in microbial communities of all natural environments, including those closely associated with plants and animals. This ubiquitous distribution determines a necessity of their physiological and genetic adaptations. Molecular methods revealed that bacteria of the genus Pseudomonas were predominant in ulcerative lesions on the skin of Baikal yellowfin Cottocomephorus grewingkii (Dybowski, 1874). According to ribosomal phylogeny, cultivated Pseudomonas spp. isolated from both ulcerative lesions and the water column of Lake Baikal were grouped into the intrageneric cluster IG P. fluorescens. The topology of the phylogenetic tree based on the gene for outer membrane porin OprF generally coincided with that based on the 16S rRNA genes at the intrageneric level; however, it reflected ecological features of the strains of the genus Pseudomonas at the subgroup level. Screening of pathogenicity determinants detected the oprL, ecfX, fliC, and algD genes in the genomes of Pseudomonas spp. isolated from the ulcerative lesions of fish, whereas oprL and gyrB genes were determined in the strains isolated from the water column.

Keywords

Pseudomonas Cottocomephorus grewingkii Lake Baikal 16S rDNA gene for outer membrane protein porin OprF pathogenicity genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peix, A., Berge, O., Rivas, R., et al., Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, no. 3, pp. 1107–1112. doi 10.1099/ijs.0.63445-0CrossRefGoogle Scholar
  2. 2.
    Pavlova, O.N., Dryukker, V.V., Kostornova, T.Ya., and Nikulina, I.G., Pseudomonas bacteria distribution in Lake Baikal, Sib. Ekol. Zh., 2003, vol. 3, pp. 267–272.Google Scholar
  3. 3.
    Schwartz, T., Armant, O., Bretschneider, N., et al., Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water, Microbiol. Biotechnol., 2015, vol. 8, no. 1, pp. 116–130. doi 10.1111/1751-7915.12156CrossRefGoogle Scholar
  4. 4.
    Mohanram, R., Jagtap, C., and Kumar, P., Isolation, screening, and characterization of surface-active agentproducing, oil-degrading marine bacteria of Mumbai Harbor, Mar. Pollut. Bull., 2016, vol. 105, pp. 131–138. doi 10.1016/j.marpolbul.2016.02.040CrossRefPubMedGoogle Scholar
  5. 5.
    Bel’kova, N.L., Denikina, N.N., Sukhanova, E.V., et al., Heterogeneity of populations of organotrophic microorganisms on outer tegumental layers of sick fish, Voda: Khim. Ekol., 2016, no. 4 (94), pp. 32–39.Google Scholar
  6. 6.
    Nishimori, E., Kita-Tsukamoto, K., and Wakabayashi, H., Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, no. 1, pp. 83–89. doi 10.1099/00207713-50-1-83CrossRefPubMedGoogle Scholar
  7. 7.
    Saiman, L. and Siegel, J., Infection control in cystic fibrosis, Clin. Microbiol. Rev., 2004, vol. 17, pp. 57–71. doi 10.1128/CMR.17.1.57-71.2004CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reddy, G.S., Matsumoto, G.I., Schumann, P., et al., Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, no. 3, pp. 713–719. doi 10.1099/ijs.0.02827-0CrossRefPubMedGoogle Scholar
  9. 9.
    Yumoto, I., Yamazaki, K., Hishinuma, M., et al., Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 349–355. doi 10.1099/00207713-51-2-349CrossRefPubMedGoogle Scholar
  10. 10.
    Zhong, Z.P., Liu, Y., Hou, T.T., et al., Pseudomonas salina sp. nov., isolated from a salt lake, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, no. 9, pp. 2846–2851. doi 10.1099/ijs.0.000341CrossRefPubMedGoogle Scholar
  11. 11.
    Moore, E.R.B., Mau, M., Arnscheidt, A., et al., The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships, Syst. Appl. Microbiol., 1996, vol. 19, pp. 478–492. https://doi.org/10.1016/S0723-2020(96)80021-X.CrossRefGoogle Scholar
  12. 12.
    Yamamoto, S., Kasai, H., Arnold, D.L., et al., Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes, Microbiology, 2000, vol. 146, pp. 2385–2394. doi 10.1099/00221287-146-10-2385CrossRefPubMedGoogle Scholar
  13. 13.
    Mulet, M., Lalucat, J., and Garcia-Valdes, E., DNA sequence-based analysis of the Pseudomonas species, Environ. Microbiol., 2010, vol. 12, pp. 1513–1530. doi 10.1111/j.1462-2920.2010.02181.xPubMedGoogle Scholar
  14. 14.
    Bodilis, J., Nsigue Meilo, S., Cornelis, P., et al., A long-branch attraction artifact reveals an adaptive radiation in Pseudomonas, Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2723–2726. doi 10.1093/molbev/msr099CrossRefPubMedGoogle Scholar
  15. 15.
    Ullstrom, C.A., Siehnel, R., Woodruff, W., et al., Conservation of the gene for outer membrane protein OprF in the family Pseudomonadaceae: sequence of the Pseudomonas synringae oprF gene, J. Bacteriol., 1991, vol. 173, pp. 768–775. doi 10.1128/jb.173.2.768-775.1991CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bodilis, J. and Barray, S., Molecular evolution of the major outer membrane protein gene (oprF) of Pseudomonas, Microbiology, 2006, vol. 152, pp. 1075–1088. doi 10.1099/mic.0.28656-0CrossRefPubMedGoogle Scholar
  17. 17.
    Bodilis, J., Hedde, M., Orange, N., and Barray, S., OprF polymorphism as a marker of ecological niche in Pseudomonas, Environ. Microbiol., 2006, vol. 8, no. 9, pp. 1544–1551. doi 10.1111/j.1462-2920.2006.01045.xCrossRefPubMedGoogle Scholar
  18. 18.
    Bodilis, J., Calbrix, R., Guerillon, J., et al., Phylogenetic relationships between environmental and clinical isolates of Pseudomonas fluorescens and related species deduced from 16S rRNA gene and OprF protein sequences, Syst. Appl. Microbiol., 2004, vol. 27, pp. 93–108. doi 10.1078/0723-2020-00253CrossRefPubMedGoogle Scholar
  19. 19.
    Lavenir, R., Jocktane, D., Laurent, F., et al., Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target, J. Microbiol. Methods, 2007, vol. 70, no. 1, pp. 20–29. doi 10.1016/j.mimet.2007.03.008CrossRefPubMedGoogle Scholar
  20. 20.
    Matthijs, S., Coorevits, A., Gebrekidan, T.T., et al., Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River, Res. Microbiol., 2013, vol. 164, no. 3, pp. 254–261. doi 10.1016/j.resmic. 2012.12.001CrossRefPubMedGoogle Scholar
  21. 21.
    Kravtsova, L.S., Izhboldina, L.A., Khanaev, I.V., et al., Disturbances of the vertical zoning of green algae in the coastal part of the Listvennichnyi gulf of Lake Baikal, Dokl. Biol. Sci., 2012, vol. 447, nos. 1-6, pp. 350–352.CrossRefPubMedGoogle Scholar
  22. 22.
    Denikina, N.N., Dzyuba, E.V., Bel’kova, N.L., et al., The first case of disease of the sponge Lubomirskia baicalensis: investigation of its microbiome, Biol. Bull. (Moscow), 2016, vol. 43, no. 3, pp. 263–270. https://doi.org/10.1134/S106235901603002X.CrossRefGoogle Scholar
  23. 23.
    Khanaev, I.V., Dzyuba, E.V., Kravtsova, L.S., and Grachev, M.A., The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal, Dokl. Biol. Sci., 2016, vol. 467, nos. 1-6, pp. 63–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Belykh, M.P., Sukhanova, E.V., and Bel’kova, N.L., Specific features of cultured heterotrophic microorganisms from the Lake Baikal littoral zone, Izv. Irkutsk. Gos. Univ.: Ser. Biol. Ekol., 2013, vol. 6, no. 3(1), pp. 20–26.Google Scholar
  25. 25.
    Bel’kova, N.L., Molecular and genetic methods for the analysis of microbial communities, in Raznoobrazie mikrobnykh soobshchestv vnutrennikh vodoemov Rossii: uchebno-metodicheskoe posobie (Diversity of Microbial Communities in Inland Water Bodies of Russia: Study Guide), 2009, pp. 53–63.Google Scholar
  26. 26.
    Sambrook, J., Fritsch, E.F., Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory, 1989, vols. 1, 2, 3.Google Scholar
  27. 27.
    Brosius, J., Dull, T.J., Sleeter, D.D., and Noller, H.F., Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli, J. Mol. Biol., 1981, vol. 148, pp. 107–127. https://doi.org/10.1016/ 0022-2836(81)90508-8.CrossRefPubMedGoogle Scholar
  28. 28.
    Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids. Symp. Ser., 1999, vol. 41, pp. 95–98.Google Scholar
  29. 29.
    Garrity, G.M., Brenner, D.J., Krieg, N.R., et al., Bergey’s Manual of Systematic Bacteriology, vol. 2: The Proteobacteria, part B: The Gammaproteobacteria, New York: Springer-Verlag, 2005, 2nd ed. doi 10.1007/0-387-28022-7Google Scholar
  30. 30.
    Garrity, G.M., Brenner, D.J., Krieg, N.R., et al., Bergey’s Manual of Systematic Bacteriology, vol. 2: The Proteobacteria, part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, New York: Springer-Verlag, 2005. doi 10.1007/0-387-29298-5Google Scholar
  31. 31.
    López-Cortés, A., Schumann, P., Pukall, R., and Stackebrandt, E., Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp. nov., isolated from the brine shrimp Artemia franciscana, Syst. Appl. Microbiol., 2006, vol. 29, no. 3, pp. 183–190. doi 10.1016/j.syapm.2005.09.007CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang, Y. and Qiu, S., Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data, Antonie van Leeuwenhoek, 2015, vol. 108, no. 5, pp. 1037–1046. doi 10.1007/s10482-015-0556-6CrossRefPubMedGoogle Scholar
  33. 33.
    Vos, P., Garrity, G., Jones, D., et al., Bergey’s Manual of Systematic Bacteriology, vol. 3: The Firmicutes, New York: Springer-Verlag, 2009. doi 10.1007/978-0-387-68489-5Google Scholar
  34. 34.
    Hilario, E., Buckley, T., and Young, J., Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA, Antonie van Leeuwenhoek, 2004, vol. 86, pp. 51–64. doi 10.1023/B:ANTO.0000024910.57117.16CrossRefPubMedGoogle Scholar
  35. 35.
    Khan, A.A. and Cerniglia, C.E., Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR, Appl. Environ. Microbiol., 1994, vol. 60, no. 10, pp. 3739–3745.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Watanabe, K., Nelson, J., Harayama, S., and Kasai, H., ICB database: the gyrB database for identification and classification of bacteria, Nucleic Acids Res., 2001, vol. 29, no. 1, pp. 344–345.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lee, C.S. and Lee, J., Evaluation of new gyrB-based real-time PCR system for the detection of B. fragilis as an indicator of human-specific fecal contamination, J. Microbiol. Methods, 2010, vol. 82, pp. 311–318. doi 10.1016/j.mimet.2010.07.012CrossRefPubMedGoogle Scholar
  38. 38.
    Qin, X., Emerson, J., Stapp, J., et al., Use of real time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis, J. Clin. Microbiol., 2003, vol. 41, no. 9, pp. 4312–4317. doi 10.1128/JCM.41.9.4312-4317.2003CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Spangenberg, C., Heuer, T., Burger, C., and Tummler, B., Genetic diversity of flagellins of Pseudomonas aeruginosa, FEBS Lett., 1996, vol. 396, no. 4, pp. 213–217. doi 10.1016/0014-5793(96)01099-XCrossRefPubMedGoogle Scholar
  40. 40.
    De Vos, D., Lim, A., Jr., Pirnay, J.P., et al., Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL, J. Clin. Microbiol., 1997, vol. 35, no. 6, pp. 1295–1299.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. L. Bel’kova
    • 1
    • 2
  • E. V. Dzyuba
    • 1
  • E. S. Klimenko
    • 3
  • I. V. Khanaev
    • 1
  • N. N. Denikina
    • 1
  1. 1.Limnological Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Scientific Centre for Family Health and Human Reproduction ProblemsIrkutskRussia
  3. 3.Department of Physical and Chemical BiologyIrkutsk State UniversityIrkutskRussia

Personalised recommendations