Advertisement

Russian Journal of Genetics

, Volume 54, Issue 3, pp 284–295 | Cite as

Bacterial Genes of Non-Heme Iron Oxygenases, Which Have a Rieske-Type Cluster, Catalyzing Initial Stages of Degradation of Chlorophenoxyacetic Acids

  • N. V. Zharikova
  • T. R. Iasakov
  • E. I. Zhurenko
  • V. V. Korobov
  • T. V. Markusheva
Reviews and Theoretical Articles
  • 31 Downloads

Abstract

Hydroxylation of the benzoic ring by non-heme iron oxygenases having a Rieske-type cluster is the key step in the aerobic degradation of chloroaromatic compounds by bacteria. Rieske oxygenases (RO) catalyze the oxidative decarboxylation reaction unique to the enzymes of this family with the formation of corresponding phenolic compounds. This review discusses the general structure, function, and classification of ROs that catalyze the oxidation of chlorophenoxyacetic acids; genes encoding the ROs with their phylogenetic classes are also reviewed.

Keywords

tft cad 2,4-D oxygenase 2,4,5-T oxygenase biodegradation chlorophenoxyacetic acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burkatskaya, E.I., Ivanova, Z.V., and Lysina, G.G., Meditsinskoe obsledovanie lits, rabotayushchikh s pestitsidami (Medical Examination of Individuals Working with Pesticides), Kiev: Zdorov’e, 1995.Google Scholar
  2. 2.
    Sokolov, V.E., Klyuev, N.A., Brodskii, E.S., et al., The primary and secondary dioxin pollutions of South Vietnam, Dokl. Biol. Sci., 1996, vol. 351, nos. 1–6, pp. 616–617.Google Scholar
  3. 3.
    Boronin, A.M. and Tsoi, T.V., Genetic systems of biodegradation: organization and regulation of expression, Genetica (Moscow), 1989, vol. 25, no. 4, pp. 581–594.Google Scholar
  4. 4.
    Gibson, D.T. and Parales, R.E., Aromatic hydrocarbon dioxygenases in environmental biotechnology, Curr. Opin. Biotechnol., 2000, vol. 11, pp. 236–243. doi 10.1016/S0958-1669(00)00090-2CrossRefPubMedGoogle Scholar
  5. 5.
    Barry, S.M. and Challis, G.L., Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases, ACS Catal., 2013, vol. 3, no. 10, pp. 2362–2370. doi 10.1021/cs400087pCrossRefGoogle Scholar
  6. 6.
    Shteinman, A.A., Iron-containing oxygenases: structure, mechanism of action and modeling, Usp. Khim., 2008, vol. 77, no. 11, pp. 1013–1035.CrossRefGoogle Scholar
  7. 7.
    Ferraro, D.J., Gakhar, L., and Ramaswamy, S., Rieske business: structure–function of Rieske non-heme oxygenases, Biochem. Biophys. Res. Commun., 2005, vol. 338, no. 1, pp. 175–190. doi 10.1016/j.bbrc.2005. 08.222CrossRefPubMedGoogle Scholar
  8. 8.
    Shumkova, E.S. and Plotnikova, E.G., Oligonucleotide primers for the detection of genes encoding large biphenyl 2,3-dioxygenase subunit of bacteria of the order Actinomycetales, Vestn. Permsk. Univ., 2012, no. 1. pp. 34–40.Google Scholar
  9. 9.
    Danganan, C.E., Ye, R.W., Daubaras, D.L., et al., Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100, Appl. Environ. Microbiol., 1994, vol. 60, pp. 4100–4106.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Rice, J.F., Menn, F.-M., Hay, A.G., et al., Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil, Biodegradation, 2005, vol. 16, pp. 501–512.CrossRefPubMedGoogle Scholar
  11. 11.
    Huong, N.L., Itoh, K., and Suyama, K., Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils, Microbes Environ., 2007, vol. 22, pp. 243–256.CrossRefGoogle Scholar
  12. 12.
    Don, R.H. and Weightman, A.J., Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP 134 (pJP4), J. Bacteriol., 1985, vol. 161, pp. 85–90.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Trefault, N., De la Iglesia, R., Molina, A.M., et al., Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways, Environ. Microbiol., 2004, vol. 6, no. 7, pp. 655–668.CrossRefPubMedGoogle Scholar
  14. 14.
    Kamagata, Y., Fulthorpe, R.R., and Tamura, K., Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria, Appl. Environ. Microbiol., 1997, vol. 63, no. 6, pp. 2266–2272.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fulthorpe, R.R., McGowan, C., Maltseva, O.V., et al., 2,4-Dichlorophenoxyacetic acid-degrading bacteria are mosaics of catabolic genes, Appl. Environ. Microbiol., 1995, vol. 61, no. 9, pp. 3274–3281.PubMedPubMedCentralGoogle Scholar
  16. 16.
    McGowan, C., Fulthorpe, R., Wright, A., and Tiedje, J.M., Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders, Appl. Environ. Microbiol., 1998, vol. 64, no. 10, pp. 4089–4092.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ka, J.O., Holben, W.E., and Tiedje, J.M., Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-Dtreated field soils, Appl. Environ. Microbiol., 1994, vol. 60, no. 4, pp. 1106–1115.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Itoh, K., Tashiro, Y., Uobe, K., et al., Root nodule Bradyrhizobium spp. harbor tfdAα and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins, Appl. Environ. Microbiol., 2004, vol. 70, no. 4, pp. 2110–2118. doi 10.1128/AEM.70.4.2110-2118.2004CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kilbane, J.J., Chatterjee, D.K., Karns, J.S., et al., Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia, Appl. Environ. Microbiol., 1982, vol. 44, no. 1, pp. 72–78.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Xun, L. and Wagnon, K.B., Purification and properties of component B of 2,4,5-trichlorophenoxyacetate oxygenase from Pseudomonas cepacia AC1100, Appl. Environ. Microbiol., 1995, vol. 61, no. 9, pp. 3499–3502.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hayashi, S., Sano, T., Suyama, K., and Itoh, K., 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94, Microbiol. Res., 2016, vol. 188, pp. 62–71. doi 10.1016/j.micres.2016.04.014CrossRefPubMedGoogle Scholar
  22. 22.
    Altschul, S.F., Gish, W., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403–410.CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.Google Scholar
  25. 25.
    Dumitru, R., Jiang, W.Z., Weeks, D.P., and Wilson, M.A., Crystal structure of dicamba monooxygenase: a Rieske nonheme oxygenase that catalyzes oxidative demethylation, J. Mol. Biol., 2009, vol. 392, no. 2, pp. 498–510. doi 10.1016/j.jmb.2009.07.021CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zharikova, N.V., Markusheva, T.V., Galkin, E.G., et al., Raoutella planticola—a new strain degrader of 2,4,5-trichlorophenoxyacetic acid, Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 3, pp. 292–297.PubMedGoogle Scholar
  27. 27.
    Zharikova, N.V., Zhurenko, E.Yu., Korobov, V.V., et al., Biodiversity of bacteria–degraders of chlorinated phenoxy acids, Vestn. Orenb. Gos. Univ., 2009, no. 6 (112), pp. 121–123.Google Scholar
  28. 28.
    Zharikova, N.V., Zhurenko, E.Yu., Korobov, V.V., et al., Characterization of the bacterial consortium degrading 2,4,5-trichlorophenoxyacetic acid, Vestn. Ural. Med. Akad. Nauki, 2011, no. 4-1, p. 173.Google Scholar
  29. 29.
    Zharikova, N.V., Iasakov, T.R., Bumazhkin, B.K., et al., Isolation and sequence analysis of pCS36-4CPA, a small plasmid from Citrobacter sp. 36-4CPA, Saudi J. Biol. Sci., 2016. doi 10.1016/j.sjbs.2016.02.014Google Scholar
  30. 30.
    Kitagawa, W., Takami, S., Miyauchi, K., et al., Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment, J. Bacteriol., 2002, vol. 184, pp. 509–518.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shimojo, M., Kawakami, M., and Amada, K., Analysis of genes encoding the 2,4-dichlorophenoxyacetic aciddegrading enzyme from Sphingomonas agrestis 58-1, J. Biosci. Bioeng., 2009, vol. 108, no. 1, pp. 56–59. doi 10.1016/j.jbiosc.2009.02.018CrossRefPubMedGoogle Scholar
  32. 32.
    Nielsen, T.K., Xu, Z., Gözdereliler, E., et al., Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas, PLoS One, 2013, vol. 8, no. 12. doi 10.1371/journal.pone.0083346Google Scholar
  33. 33.
    Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.PubMedGoogle Scholar
  34. 34.
    Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874.CrossRefPubMedGoogle Scholar
  35. 35.
    Tamura, K., Nei, M., and Kumar, S., Prospects for inferring very large phylogenies by using the neighborjoining method, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 11030–11035.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783–791.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. V. Zharikova
    • 1
  • T. R. Iasakov
    • 1
  • E. I. Zhurenko
    • 1
  • V. V. Korobov
    • 1
  • T. V. Markusheva
    • 1
  1. 1.Ufa Institute of BiologyRussian Academy of SciencesUfaRussia

Personalised recommendations