Russian Journal of Genetics

, Volume 54, Issue 3, pp 369–373 | Cite as

Whole Mitochondrial Genome of Blakiston’s Fish Owl Bubo (Ketupa) blakistoni Suggests Its Redescription in the Genus Ketupa

  • L. N. Spiridonova
  • S. G. Surmach
Short Communications


The paper reports the whole mitochondrial genome (approximately 13 kb) sequencing in three individual representatives of the continental population of Blakiston’s fish owl Bubo blakistoni (Seebohm 1884), the IUCN Red List species in the family Strigidae. The analysis revealed extremely low mtDNA genetic diversity, which may be indicative of the critical state of the studied population. The phylogenetic analysis performed on the basis of the whole mitochondrial genome sequencing data showed that Blakiston’s fish owl is more closely related to the Strix genus than to the Bubo genus with the genetic divergence between blakistoni and either of the two genera being statistically significant and close to intergeneric level (p-distance of 0.135 in the case of the Strix genus and p-distance of 0.151 in the case of the Bubo genus). The results obtained in this work do not match the published data on the mitochondrial cytochrome b gene and the nuclear RAG-1 gene, which laid the basis for the assignment of Blackiston’s fish owl to the Bubo genus in the recent taxonomic bulletins, but rather support the earlier taxonomic classification according to which all four Asian forms, blakistoni, flavipes, zeylonensis, and ketupu, constituted a separate Ketupa genus.


Blakiston’s fish owl Bubo (Ketupa) blakistoni mitochondrial genome phylogeny Strigidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Threatened Birds of Asia: The BirdLife International Red Data Book, Cambridge, UK: BirdLife International. 2001.Google Scholar
  2. 2.
    Seebohm, H., Furter contribution to the ornithology of Japan, Ibis, 1884, vol. 26, no. 1, pp. 30–43.CrossRefGoogle Scholar
  3. 3.
    Taczanowski, L., Faune ornitologique de la Siberie orientale, Memoris de l’Academie Imperiale des Sciences de St. Petersbourg, 1891–1893, ser. 7, vol. 39.Google Scholar
  4. 4.
    Dementiev, G.P., Sur la position systematique de Bubo doerriesi Seebohm, Alauda, 1933, vol. 5, pp. 383–388.Google Scholar
  5. 5.
    Neumann, O., Bulletin of the British Ornithologists’ Club, 1935, vol. 55, p. 138.Google Scholar
  6. 6.
    Vaurie, C., The Birds of the Palearctic Fauna: Non-Passeriformes, London: Witherby, 1965.Google Scholar
  7. 7.
    König, C., Weick, F., and Becking, J.H., Owls: A Guide to the Owls of the World, Sussex: Pica Press, 1999.Google Scholar
  8. 8.
    Handbook of the Birds of the World, Del Hoyo, J., Elliot, A., and Sargatal, J., Eds., Barcelona: Lynx Edicions, 1999, vol. 5.Google Scholar
  9. 9.
    Wink, M., El-Sayed, A.-A., Sauer-Gürth, H., and Gonzalez, J., Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cyt b and the nuclear RAG-1 gene, Ardea, 2009, vol. 97, pp. 581–591.CrossRefGoogle Scholar
  10. 10.
    Omote, K., Nishida, C., Takenaka, T., and Masuda, R., Temporal changes of genetic population structure and diversity in the endangered Blakiston’s fish owl (Bubo blakistoni) on Hokkaido Island, Japan, revealed by microsatellite analysis, Zool. Sci., 2012, vol. 29, pp. 299–304.CrossRefPubMedGoogle Scholar
  11. 11.
    Omote, K., Nishida, Ch., Dick, M.H., and Masuda, R., Limited phylogenetic distribution of a long tandemrepeat cluster in the mitochondrial control region in Bubo (Aves, Strigidae) and cluster variation in Blakiston’s fish owl (Bubo blakistoni), Mol. Phyl. Evol., 2013, vol. 66, pp. 889–897.CrossRefGoogle Scholar
  12. 12.
    The Howard and Moore Complete Checklist of the Birds of the World, Dickinson, E.C. and Christidis, L., Eds., Eastbourne, U.K., Aves Press, 2014, vol. 2, 4th ed.Google Scholar
  13. 13.
    Ellegren, H., First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds, Proc. R. Soc. London, Ser. B, 1996, vol. 263, pp. 1635–1641.CrossRefGoogle Scholar
  14. 14.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.Google Scholar
  16. 16.
    Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452.CrossRefPubMedGoogle Scholar
  17. 17.
    Kimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, pp. 111–120.CrossRefPubMedGoogle Scholar
  18. 18.
    Hasegawa, M., Kishino, H., and Yano, T., Dating the human–ape split by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22, pp. 160–174.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Federal Scientific Center of Biodiversity of the East Asia Terrestrial Biota, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations