Advertisement

Russian Journal of Genetics

, Volume 54, Issue 3, pp 314–321 | Cite as

Mitochondrial Evidence of Refugial Distribution of the Pygmy Field Mouse Sylvaemus uralensis Pall. (Rodentia, Muridae) in the Northwestern Caucasus

  • O. O. Grigoryeva
  • V. V. Stakheev
  • V. N. Orlov
Animal Genetics
  • 16 Downloads

Abstract

Variation of the 838-bp fragment of the mitochondrial cytb gene was analyzed in Sylvaemus uralensis from the northern macroslope of the Western Caucasus. On the basis of two fixed nonsynonymous substitutions, cytb sequences of the population sample studied can be considered as a distinct Lago-Naki haplogroup, which is clustered in the European cytb lineage. As estimated on the basis of the known rate of substitutions per third codon position in S. sylvaticus, the population must have been isolated for all or a part of the last glaciation period (10000 to 100000 years ago). The observed differentiation of cytb haplotypes is indicative of the refugial distribution of S. uralensis in the northern macroslope of the Western Caucasus, as well as of a secondary contact between the Caucasian and the Russian Plain populations during the Holocene.

Keywords

pygmy field mouse Sylvaemus uralensis phylogeography cytb refugium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balakirev, A.E., Baskevich, M.I., Okulova, N.M., et al., On the taxonomic rank of ciscaucasicus and its relationships with the pygmy wood mouse Sylvaemus uralensis inferred from the mtDNA cytochrome b gene sequence, Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1386–1399. doi 10.1134/S1022795407120083CrossRefGoogle Scholar
  2. 2.
    Chelomina, G.N., Atopkin, D.M., and Bogdanov, A.S., Phylogenetic relationships between species and intraspecific forms of forest mice from the genus Sylvaemus as determined by partial sequencing of the cytochrome b gene of mitochondrial DNA, Dokl. Biol. Sci., 2007, vol. 416, nos. 1–6, pp. 356–359. doi 1134/S0012496607050092CrossRefPubMedGoogle Scholar
  3. 3.
    Chelomina, G.N. and Atopkin, D.M., Molecular genetic evidence of a deep phylogenetic discontinuity between the Asian and European races of pygmy wood mouse based on the mitochondrial cytochrome b gene variation, Mol. Biol. (Moscow), 2010, vol. 44, no. 5, pp. 699–708. doi 10.1134/S0026893310050043CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A.S., Stakheev, V.V., Zykov, A.E., et al., Genetic variation and differentiation of wood mice from the genus Sylvaemus inferred from sequencing of the cytochrome oxidase subunit 1 gene fragment, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 186–198. doi 10.1134/S1022795412020044CrossRefGoogle Scholar
  5. 5.
    Orlov, V.N., Kozlovskii, A.I., Nadzhafova, R.S., and Bulatova, N.Sh., Chromosome diagnoses and the place of genetic taxa in the evolutionary classification of European wood mice of the subgenus Sylvaemus (Apodemus, Muridae, Rodentia), Zool. Zh., 1996, vol. 75, no. 1, pp. 88–102.Google Scholar
  6. 6.
    Orlov, V.N., Bulatova, N.Sh., Nadjafova, R.S., and Kozlovsky, A.I., Evolutionary classification of European wood mice of the subgenus Sylvaemus based on allozyme and chromosome data, Bon. Zool. Beitr., 1996, vol. 46, pp. 191–202.Google Scholar
  7. 7.
    Bogdanov, A.S., Chromosome differentiation of the pygmy wood mouse Sylvaemus uralensis populations in the eastern part of its range, Zool. Zh., 2001, vol. 80, no. 3, pp. 331–342.Google Scholar
  8. 8.
    Baskevich, M.I., Potapov, S.G., Okulova, N.M., and Balakirev, A.E., Diagnostics of syntopic mouse species of the genus Apodemus in the western Great Caucasus, Zool. Zh., 2004, vol. 83, no. 10, pp. 1261–1269.Google Scholar
  9. 9.
    Kocher, T.O., Thomas, W.K., and Meyer, A., Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, no. 16, pp. 6196–6200.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McClellan, D.A. and McCracken, K.G., Estimating the influence of selection on the variable amino acid sites of the cytochrome b protein functional domains, Mol. Biol. Evol., 2001, vol. 18, no. 6, pp. 917–925. doi 10.1093/oxfordjournals.molbev.a003892CrossRefPubMedGoogle Scholar
  11. 11.
    Woolley, S., Johnson, J., Smith, M.J., et al., Tree-SAAP: selection on amino acid properties using phylogenetic trees, Bioinformatics, 2003, vol. 19, no. 5, pp. 671–672. doi 10.1093/bioinformatics/btg043CrossRefPubMedGoogle Scholar
  12. 12.
    Tamura, K., Battistuzzi, F.U., Billing-Ross, P., et al., Estimating divergence times in large molecular phylogenies, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 47, pp. 19333–19338. doi 10.1073/pnas.1213199109CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases, Mol. Biol. Evol., 1992, vol. 9, no. 9, pp. 678–687. doi 10.1093/oxfordjournals. molbev.a040752PubMedGoogle Scholar
  14. 14.
    Amshokova, A.Kh., Tembotova, F.A., and Kuchinova, E.A., Genetic diversity and geographical distribution of the mitochondrial DNA haplotypes in cryptic species of wood mice of the subgenus Sylvaemus from the Western Caucasus, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2015, vol. 17, no. 4 (2), pp. 402–411.Google Scholar
  15. 15.
    Michaux, J.R., Chevret, P., Filippucci, M.G., and Macholan, M., Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA, Mol. Phylogenet. Evol., 2002, vol. 23, no. 2, pp. 123–136. doi 10.1016/S1055-7903(02)00007-6CrossRefPubMedGoogle Scholar
  16. 16.
    Nabholz, B., Glemin, S., and Galtier, N., Strong variations of mitochondrial mutation rate across mammals— the longevity hypothesis, Mol. Biol. Evol., 2008, vol. 25, no. 1, pp. 120–130. doi 10.1093/molbev/ msm248CrossRefPubMedGoogle Scholar
  17. 17.
    McClellan, D.A., Palfreyman, E.J., Smith, M.J., et al., Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins, Mol. Biol. Evol., 2005, vol. 22, no. 3, pp. 437–455. doi 10.1093/molbev/msi028CrossRefPubMedGoogle Scholar
  18. 18.
    Da Fonseca, R.R., Johnson, W.E., O’Brien, S.J., et al., The adaptive evolution of the mammalian mitochondrial genome, BMC Genomics, 2008, vol. 9, no. 1, p. 119. doi 10.1186/1471-2164-9-119CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fink, S., Excoffier, L., and Heckel, G., Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptations, Mol. Ecol., 2004, vol. 13, no. 11, pp. 3501–3514. doi 10.1111/j.1365-294X.2004.02351.xCrossRefPubMedGoogle Scholar
  20. 20.
    Svenning, J.-C., Normand, S., and Kageyama, M., Glacial refugia of temperate trees in Europe: insights from species distribution modeling, J. Ecol., 2008, vol. 96, no. 6, pp. 1117–1127. doi 10.1111/j.1365- 2745.2008.01422.xCrossRefGoogle Scholar
  21. 21.
    Tarkhnishvili, D., Gavashelishvili, A., and Mumladze, L., Palaeoclimatic models help to understand current distribution of Caucasian forest species, Biol. J. Linn. Soc., 2012, vol. 105, no. 1, pp. 231–248. doi 10.1111/j.1095-8312.2011.01788.xCrossRefGoogle Scholar
  22. 22.
    Koval’, I.P. and Livitskaya, S.A., Rare plant communities of Krasnodar krai, in Rastitel’nye resursy: redkie i ischezayushchie rastitel’nye soobshchestva Severnogo Kavkaza (Plant Resources: Rare and Endangered Plant Communities of the North Caucasus), Rostov-on-Don: Rostov Univ., 1986, part 3, pp. 57–117.Google Scholar
  23. 23.
    Kharadze, A.L., About some florogenetic groups of endemic species in the Greater Caucasus, in Problemy botaniki (Problems of Botany), Leningrad: Nauka, 1974, pp. 70–76.Google Scholar
  24. 24.
    Bannikova, A.A., Sighazeva, A.M., Dzuev, R.I., et al., Genetic diversity of Chionomys genus (Mammalia, Arvicolinae) and comparative phylogeography of snow voles, Russ. J. Genet., 2013, vol. 49, no. 5, pp. 561–575. doi 10.1134/S1022795413050025CrossRefGoogle Scholar
  25. 25.
    Karamysheva, T.V., Bochkarev, M.N., Rubtsov, N.B., et al., Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood mice Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2010, vol. 46, no. 6, pp. 712–724. doi 10.1134/S1022795410060128CrossRefGoogle Scholar
  26. 26.
    Rubtsov, N.B., Karamysheva, T.V., Likhoshvay, T.V., et al., Comparative FISH analysis of C-positive regions of chromosomes of wood mice (Rodentia, Muridae, Sylvaemus), Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1096–1110. doi 10.1134/S1022795411090158CrossRefGoogle Scholar
  27. 27.
    Kosintsev, P.A., Mammal complexes of Early Holocene (preboreal–boreal) (Preboreal–Boreal–PB-BO) (<10.2–≥8 thousand years ago), Evolyutsiya ekosistem Evropy pri perekhode ot pleistotsena k golotsenu (24–8 tys. l. n.) (Evolution of European ecosystems at the transition from Pleistocene to Holocene (24–8 thousand years ago)), Markova, A.K. and van Kolfschoten, T., Eds., Moscow: KMK, 2008, pp. 233–258.Google Scholar
  28. 28.
    Stakheev, V.V., Vodolazhsky, D.I., and Bogdanov, A.S., Revision of the species composition of the wood mice from the genus Sylvaemus from the territory of Rostov oblast using karyological, allozyme, and molecular genetic analysis, Russ. J. Genet., 2011, vol. 47, no. 5, pp. 579–589. doi 10.1134/S1022795411050152CrossRefGoogle Scholar
  29. 29.
    Stakheev, V.V., Balakirev, A.E., Grigoryeva, O.O., et al., Distribution of cryptic shrew species of the genus Sorex (Mammalia) on the plain between the Don and Kuban rivers as inferred by molecular markers, Biol. Bull., 2012, vol. 39, no. 10, pp. 834–838. doi 10.1134/S1062359012100093CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. O. Grigoryeva
    • 1
  • V. V. Stakheev
    • 2
  • V. N. Orlov
    • 1
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Arid Zones, Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations