Russian Journal of Genetics

, Volume 54, Issue 3, pp 328–334 | Cite as

Characteristics of the Genetic Structure of Snow Sheep (Ovis nivicola lydekkeri) of the Verkhoyansk Mountain Chain

  • T. E. Deniskova
  • A. V. Dotsev
  • I. M. Okhlopkov
  • V. A. Bagirov
  • A. S. Kramarenko
  • G. Brem
  • N. A. Zinovieva
Animal Genetics
  • 4 Downloads

Abstract

Genetic characteristics of the allele pool of four groups of the Yakut snow sheep subspecies (Ovis nivicola lydekkeri) inhabiting various parts of the Verkhoyansk Mountain Range such as Kharaulakh Ridge, Orulgan Ridge, ridges of the Central Verkhoyansk, and Suntar-Khayata Ridge is presented. Fragment analysis using 17 microsatellite loci was carried out using the ABI 3131xl genetic analyzer. Significant heterozygote deficiency was detected in all investigated snow sheep populations. Differentiation of the studied groups in accordance to their geographical origin was revealed.

Keywords

Ovis nivicola lydekkeri microsatellites allele pool genetic diversity genetic differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okhlopkov, I.M. and Krivoshapkin, A.A., Aerovizual’nyi uchet chislennosti snezhnogo barana na territorii Verkhoyanskogo khrebta: zaklyuchitel’nyi otchet (Aerial Survey of the Snow Sheep Number in the Verkhoyansk Mountain Chain: Final Report), Yakutsk: Sakhapoligrafizdat, 2010.Google Scholar
  2. 2.
    Krivoshapkin, A.A. and Yakovlev, F.G., Snezhnyi Baran Verkhoyan’ya (Snow Sheep of the Verkhoyansk Mountain Chain), Yakutsk: Sakhapoligrafizdat, 1999.Google Scholar
  3. 3.
    Korzhuev, S.S., Rel’ef i geologicheskoe stroenie Yakutii (Relief and Geological Structure of Yakutia), Moscow: Nauka, 1965, pp. 29–114.Google Scholar
  4. 4.
    Egorov, O.V., Dikie kopytnye Yakutii (Wild Ungulates of Yakutia), Moscow: Nauka, 1965.Google Scholar
  5. 5.
    Revin, Yu.V., Sopin, L.V., and Zheleznov, N.K., Snezhnyi baran (Snow Sheep), Novosibirsk: Nauka, 1988.Google Scholar
  6. 6.
    Bagirov, V.A., Okhlopkov, I.M., and Zinov’eva, N.A., Snezhnyi baran Yakutii: geneticheskoe raznoobrazie i puti sokhraneniya genofonda (Yakutian Snow Sheep: Genetic Diversity and the Ways to Conserve Gene Pool), Dubrovitsy: VIZh im. L.K. Ernsta, 2016.Google Scholar
  7. 7.
    Putman, A.I. and Carbone, I., Challenges in analysis and interpretation of microsatellite data for population genetic studies, Ecol. Evol., 2014, vol. 4, no. 22, pp. 4399–4428. doi 10.1002/ece3.1305PubMedPubMedCentralGoogle Scholar
  8. 8.
    Dieringer, D. and Schlötterer, C., Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species, Genome Res., 2003, vol. 13, pp. 2242–2251. doi 10.1101/gr. 1416703CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen, M.H. and Dorn, S., Cross-amplification of microsatellites from the codling moth Cydia pomonella to three other species of the tribe Grapholitini (Lepidoptera: Tortricidae), Mol. Ecol. Resour., 2010, vol. 10, no. 6, pp. 1034–1037. doi 10.1111/j.1755-0998.2010. 02837CrossRefPubMedGoogle Scholar
  10. 10.
    Forbes, S.H., Hogg, J.T., Buchanan, F.C., et al., Microsatellite evolution in congeneric mammals: domestic and bighorn sheep, Mol. Biol. Evol., 1995, vol. 12, no. 6, pp. 1106–1113.PubMedGoogle Scholar
  11. 11.
    Poissant, J., Shafer, A.B.A., Davis, C.S., et al., Genome-wide cross-amplification of domestic sheep microsatellites in bighorn sheep and mountain goats, Mol. Ecol. Resour., 2009, vol. 9, no. 4, pp. 1121–1126. doi 10.1111/j.1755-0998.2009.02575.xCrossRefPubMedGoogle Scholar
  12. 12.
    Gutierrez, E., Kalinowski, S., Boyce, W., and Hedrick, P., Genetic variation and population structure in desert bighorn sheep: implications for conservation, Conserv. Genet., 2000, vol. 1, no. 1, pp. 3–15. doi 10.1023/A:1010125519304CrossRefGoogle Scholar
  13. 13.
    Hedrick, P.W., Gutiérrez, G.A., and Lee, R.N., Founder effect in an island population of bighorn sheep, Mol. Ecol., 2001, vol. 10, no. 4, pp. 851–857. doi 10.1046/j.1365-294X.2001.01243.xCrossRefPubMedGoogle Scholar
  14. 14.
    Abad-Zavaleta, J., Sifuentes-Rincón, A.M., Lafón Terrazas, A., et al., Genetic diversity analysis of two desert bighorn sheep (Ovis canadensis mexicana) population in Mexico, Trop. Subtrop. Agroecosyst., 2011, no. 14, pp. 171–178.Google Scholar
  15. 15.
    Worley, K., Strobeck, C., Arthur, S., et al., Population genetic structure of North American thinhorn sheep (Ovis dalli), Mol. Ecol., 2004, vol. 4, no. 13, pp. 9–2545. doi 10.1111/j.1365-294X.2004.02248.xGoogle Scholar
  16. 16.
    Bunch, T.D., Wu, C., Zhang, Y.-P., and Wang, S., Phylogenetic analysis of snow sheep (Ovis nivicola) and closely related taxa, J. Hered., 2006, vol. 97, pp. 21–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Rezaei, H.R., Naderia, S., Chintauan-Marquiera, I.C., et al., Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae), Mol. Phylogenet. Evol., 2010, vol. 54, pp. 315–326.CrossRefPubMedGoogle Scholar
  18. 18.
    Deniskova, T.E., Sermyagin, A.A., Bagirov, V.A., et al., Comparative analysis of the effectiveness of STR and SNP markers for intraspecific and interspecific differ entiation of the genus Ovis, Russ. J. Genet., 2016, vol. 52, no. 1, pp. 79–84.CrossRefGoogle Scholar
  19. 19.
    Zinov’eva, N.A., Popov, A.N., Ernst, L.K., et al., Metodicheskie rekomendatsii po ispol’zovaniyu metoda polimeraznoi tsepnoi reaktsii v zhivotnovodstve (Guidelines for the Use of Polymerase Chain Reaction in Animal Husbandry), Dubrovitsy: VIZh im. L.K. Ernsta, 1998.Google Scholar
  20. 20.
    Weir, B.S. and Cockerham, C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358–1370.PubMedGoogle Scholar
  21. 21.
    Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, pp. 583–590.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295. doi 10.1111/j.1471-8286.2005.01155.xCrossRefGoogle Scholar
  23. 23.
    Sundqvist, L., Zackrisson, M.Z., and Kleinhans, D., Directional genetic differentiation and asymmetric migration, Ecol. Evol., 2016, vol. 6, no. 11, pp. 3461–475. doi 10.1002/ece3.2096CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Keenan, K., McGinnity, P., Cross, T.F., et al., diveRsity: an R package for the estimation of population genetics parameters and their associated errors, Methods Ecol. Evol., 2013, vol. 4, no. 8. pp. 782–788. doi 10.1111/2041-210X.12067CrossRefGoogle Scholar
  25. 25.
    Alcala, N., Goudet, J., and Vuilleumier, S., On the transition of genetic differentiation from isolation to panmixia: what we can learn from Gst and D, Theor. Popul. Biol., 2014, vol. 93, pp. 75–84. doi 10.1016/j.tpb.2014.02.003CrossRefPubMedGoogle Scholar
  26. 26.
    Jost, L., GST and its relatives do not measure differentiation, Mol. Ecol., 2008, vol. 17, no. 18, pp. 4015–4026. doi 10.1111/j.1365-294X.2008.03887.xCrossRefPubMedGoogle Scholar
  27. 27.
    Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, pp. 4–9.Google Scholar
  28. 28.
    Epps, C.W, Palsbøll, P.J., Wehausen, J.D., et al., Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep, Ecol. Lett., 2005, vol. 8, pp. 1029–1038. doi 10.1111/j.1461- 0248.2005.00804.xCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. E. Deniskova
    • 1
  • A. V. Dotsev
    • 1
  • I. M. Okhlopkov
    • 1
    • 2
  • V. A. Bagirov
    • 1
  • A. S. Kramarenko
    • 3
  • G. Brem
    • 1
    • 4
  • N. A. Zinovieva
    • 1
  1. 1.L.K. Ernst Federal Science Center for Animal Husbandrypos. DubrovitsyRussia
  2. 2.Institute for Biological Problems of Cryolithozone, Siberian BranchRussian Academy of SciencesYakutskRussia
  3. 3.Mykolaiv National Agrarian UniversityMykolaivUkraine
  4. 4.Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria

Personalised recommendations