Skip to main content
Log in

Substitution bias and evolutionary rate of mitochondrial protein-encoding genes in four species of Cecidomyiidae

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Five mitochondrial (mt) protein-encoding genes (COX1, COX2, CytB, ND4 and ND5) from the wheat midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), were sequenced and compared with those of 3 other Cecidomyiidae species, Mayetiola destructor, Rhopalomyia pomum, and Asphondylia rosetta. These genes shared similar AT content (74.0–80.1%) and base substitution bias in favour of transversions (68.87–79.72%) over transitions (20.28–37.04%). Substitution saturation analyses indicated fast saturation of transitional substitutions in COX2, CytB, ND4 and ND5, especially at the 3rd codon positions. Analysis of interspecific divergence among the 4 species showed that the sequence divergence rates (evolutionary rates) were in the order of ND4 = CytB > COX2 = ND5 > COX1. Intraspecific genetic polymorphism analysis within the field populations of S. mosellana indicated that ND4 had the highest genetic polymorphism and COX1 the lowest. Genetic variation patterns suggested that COX1 could be used as a molecular marker for phylogenetic analysis across a relatively wide taxonomic range in Cecidomyiidae, while COX2 and ND5 may be useful for estimating relationships at a subgenus level or among closely related species. With its high genetic polymorphism, ND4 is the molecular marker most suitable for population genetics studies. These findings will be valuable for our further understanding and studies in evolutionary biology and population genetics for S. mosellana and other Cecidomyiidae insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galtier, N., Nabholz, B., Glemin, S., et al., Mitochondrial DNA as a marker of molecular diversity: A reappraisal, Mol. Ecol., 2009, vol. 18, no. 22, pp. 4541–4550.

    Article  PubMed  CAS  Google Scholar 

  2. Gao, B.J., Zhang, X.W., Zhou, G.N., et al., Genetic structure of pine caterpillars (Dendrolimus) populations based on the analysis of Cytb gene sequences, Acta Ecol. Sin., 2011, vol. 31, no. 6, pp. 1727–1734.

    CAS  Google Scholar 

  3. Crozier, R.H., Crozier, Y.C., and Mackinlay, A.G., The COI and COII region of honeybee mitochondrial DNA: Evidence for variation in insect mitochondrial evolutionary rates, Mol. Biol. Evol., 1989, vol. 6, no. 4, pp. 399–411.

    PubMed  CAS  Google Scholar 

  4. Yang, Z.H. and Kumar, S., Approximate methods for estimating the pattern of nucleotide substitution and the variation of substitution rates among sites, Mol. Biol. Evol., 1996, vol. 13, no. 5, pp. 650–659.

    Article  PubMed  CAS  Google Scholar 

  5. Ohta, T., Mechanisms of molecular evolution, Philos. Trans. R. Soc., B, 2000, vol. 355, no. 1403, pp. 1623–1626.

    Article  CAS  Google Scholar 

  6. Ballard, J.W.O. and Whitlock, M.C., The incomplete natural history of mitochondria, Mol. Ecol., 2004, vol. 13, no. 4, pp. 729–744.

    Article  PubMed  Google Scholar 

  7. Uechi, N., Yukawa, J., and Yamaguchi, D., Host alternation by gall midges of the genus Asphondylia (Diptera: Cecidomyiidae), Bishop Mus. Bull. Entomol., 2004, no. 12, pp. 53–66.

    Google Scholar 

  8. Ekrem, T., Willassen, E., and Stur, E., A comprehensive DNA sequence library is essential for identification with DNA barcodes, Mol. Phylogenet. Evol., 2007, vol. 43, no. 2, pp. 530–542.

    Article  PubMed  CAS  Google Scholar 

  9. Papadopoulou, A., Jones, A.G., Hammond, P.M., et al., DNA taxonomy and phylogeography of beetles of the Falkland Islands (Iisles Malvinas), Mol. Phylogenet. Evol., 2009, vol. 53, no. 3, pp. 935–947.

    Article  PubMed  CAS  Google Scholar 

  10. Beck, E.T., Bosio, C.F., Geske, D.A., et al., An analysis of gene flow among midwestern populations of the mosquito Ochlerotatus triseriatus, Am. J. Trop. Med. Hyg., 2005, vol. 73, no. 3, pp. 534–540.

    PubMed  CAS  Google Scholar 

  11. He, H., Yuan, X.Q., Wei, C., et al., Genetic variation of the mitochondrial ND4 region among geographical populations of Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) in China, J. Kansas Entomol. Soc., 2006, vol. 79, no. 3, pp. 211–221.

    Article  Google Scholar 

  12. Urdaneta-Marquez, L., Bosio, C., Herrera, F., et al., Genetic relationships among Aedes aegypti collections in Venezuela as determined by mitochondrial DNA variation and nuclear single nucleotide polymorphisms, Am. J. Trop. Med. Hyg., 2008, vol. 78, no. 3, pp. 479–491.

    PubMed  CAS  Google Scholar 

  13. Ganaha, T., Yukawa, J., Uechi, N., et al., Identifications of some species of the genus Rhopalomyia (Diptera: Cecidomyiidae) inducing galls on Artemisia (Asteraceae) in South Korea, ESAKIA, 2004, no. 44, pp. 45–55.

    Google Scholar 

  14. Tokuda, M., Yang, M.M., and Yukawa, J., Taxonomy and molecular phylogeny of Daphnephila gall midges (Diptera: Cecidomyiidae) inducing complex leaf galls on Lauraceae, with descriptions of five new species associated with Machilus thunbergii in Taiwan, Zool. Sci., 2008, vol. 25, no. 5, pp. 533–545.

    Article  PubMed  CAS  Google Scholar 

  15. Bechenbach, A.T. and Joy, J.B., Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): Rearrangement and severe truncation of tRNA genes, Genome Biol. Evol., 2009, no. 1, pp. 278–287.

    Google Scholar 

  16. Larkin, M.A., Blackshields, G., Brown, N.P., et al., ClustalW2 and ClustalX version 2, Bioinformatics, 2007, vol. 23, no. 21, pp. 2947–2954.

    Article  PubMed  CAS  Google Scholar 

  17. Lalitha, S., Primer Premier 5, Biotech. Software Int. Rep., 2000, no. 1, pp. 270–272.

    Google Scholar 

  18. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, M., Cao, T.W., Zhang, R., et al., Phylogeny of Apaturinae butterflies (Lepidoptera: Nymphalidae) based on mitochondrial cytochrome oxidase I gene, J. Genet. Genomics, 2007, vol. 34, no. 9, pp. 812–823.

    Article  PubMed  CAS  Google Scholar 

  20. Xia, X., Xie, Z., Salemi, M., et al., An index of substitution saturation and its application, Mol. Phylogenet. Evol., 2003, vol. 26, no. 1, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  21. Xia, X. and Xie, Z., DAMBE: software package for data analysis in molecular biology and evolution, J. Hered., 2001, vol. 92, no. 4, pp. 371–373.

    Article  PubMed  CAS  Google Scholar 

  22. Rozas, J., DNA sequence polymorphism analysis using DnaSP, in Methods in Molecular Biology, New York: Humana, 2009, no. 537, pp. 337–350.

    Google Scholar 

  23. Herbeck, J.T. and Novembre, J., Codon usage patterns in cytochrome oxidase I across multiple insect orders, J. Mol. Evol., 2003, vol. 56, no. 6, pp. 691–701.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, Q.P., Feng, Y., and Xue, Q.Z., Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa, Mitochondrion, 2004, vol. 4, no. 4, pp. 313–320.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Y.W., Ryder, O.A., and Zhang, Y.P., Intra- and interspecific variation of the CCR5 gene in higher primates, Mol. Biol. Evol., 2003, vol. 20, no. 10, pp. 1722–1729.

    Article  PubMed  CAS  Google Scholar 

  26. Yeates, D.K. and Wiegmann, B.M., Congruence and controversy: toward a higher-level phylogeny of Diptera, Ann. Rev. Entomol., 1999, no. 44, pp. 397–428.

    Google Scholar 

  27. Singer, G.A.C. and Hickey, D.A., Nucleotide bias causes a genomewide bias in the amino acid composition of proteins, Mol. Biol. Evol., 2000, vol. 17, no. 11, pp. 1581–1588.

    Article  PubMed  CAS  Google Scholar 

  28. Sun, Z., Wan, D.G., Murphy, R.W., et al., Comparison of base composition and codon usage in insect mitochondrial genomes, Genes Genomics, 2009, vol. 31, no. 1, pp. 65–71.

    Article  CAS  Google Scholar 

  29. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  30. Hillis, D.M., Huelsenbeck, J.P., and Cunningham, C.W., Application and accuracy of molecular phylogenies, Science, 1994, vol. 264, no. 5159, pp. 671–677.

    Article  PubMed  CAS  Google Scholar 

  31. Yang, Z.H. and Yoder, A., Estimation of the transition/transversion rate bias and species sampling, Mol. Biol. Evol., 1999, vol. 48, pp. 274–283.

    Article  CAS  Google Scholar 

  32. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Duan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y., Wu, R.H., Jiang, Y.L. et al. Substitution bias and evolutionary rate of mitochondrial protein-encoding genes in four species of Cecidomyiidae. Russ J Genet 49, 1183–1189 (2013). https://doi.org/10.1134/S1022795413100025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413100025

Keywords

Navigation