Skip to main content
Log in

Chloroplast Retrograde Signaling System

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Modern ideas on the nature and functions of plastid retrograde signals, i.e., plastid retrograde signaling, predominantly of chloroplasts, are summarized. The main attention is focused on the participation of plastid retrograde signals in inter- and intracellular signaling pathways and their role in the processes of plant growth and development. The small amount of data on the little-studied retrograde signaling system of plant mitochondria are outlined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Szechyńska-Hebda, M. and Karpiński, S., Light intensity-dependent retrograde signalling in higher plants, J. Plant Physiol., 2013, vol. 170, pp. 1501–1516.

  2. Leister, D., Wang, L., and Kleine, T., Organellar gene expression and acclimation of plants to environmental stress, Front. Plant Sci., 2017, vol. 8: 387.

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Barajas-López, J.D., Blanco, N.E., and Strand, Å., Plastid-to-nucleus communication, signals controlling the running of the plant cell, Biochim. Biophys. Acta, 2013, vol. 1833, pp. 425–437.

  4. Sun, A.Z. and Guo, F.Q., Chloroplast retrograde regulation of heat stress responses in plants, Front. Plant Sci., 2016, vol. 7: 398.

    PubMed  PubMed Central  Google Scholar 

  5. Chi, W., Feng, P., Ma, J., and Zhang, L., Metabolites and chloroplast retrograde signaling, Curr. Opin. Plant Biol., 2015, vol. 25, pp. 32–38.

    Article  CAS  PubMed  Google Scholar 

  6. Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R., and Pogson, B.J., Learning the languages of the chloroplast: retrograde signaling and beyond, Annu. Rev. Plant Biol., 2016, vol. 67, pp. 25–53.

    Article  CAS  PubMed  Google Scholar 

  7. Van Aken, O. and Pogson, B.J., Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death, Cell Death Differ., 2017, vol. 24, pp. 955–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chi, W., Sun, X., and Zhang, L., Intracellular signaling from plastid to nucleus, Annu. Rev. Plant Biol., 2013, vol. 64, pp. 559–582.

    Article  CAS  PubMed  Google Scholar 

  9. Börner, T., The discovery of plastid-to-nucleus retrograde signaling—a personal perspective, Protoplasma, 2017, vol. 254, pp. 1845–1855.

  10. Page, M.T., McCormac, A.C., Smith, A.G., and Terry, M.J., Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression, New Phytol., 2017, vol. 213, pp. 1168–1180.

    Article  CAS  Google Scholar 

  11. Yurina, N.P. and Odintsova, M.S., Plant signaling systems. Plastid-generated signals and their role in nuclear gene expression, Russ. J. Plant Physiol., 2007, vol. 54, pp. 427–438.

    Article  CAS  Google Scholar 

  12. Xiao, Y., Wang, J., and Dehesh, K., Review of stress specific organelles-to-nucleus metabolic signal molecules in plants, Plant Sci., 2013, vol. 212, pp. 102–107.

    Article  CAS  PubMed  Google Scholar 

  13. Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M., Retrograde signaling between plastid and nucleus: a review, J. Plant Physiol., 2015, vol. 181, pp. 55–66.

    Article  CAS  PubMed  Google Scholar 

  14. Kleine, T. and Leister, D., Retrograde signaling: organelles go networking, Biochim. Biophys. Acta, 2016, vol. 1857, pp. 1313–1325.

    Article  CAS  PubMed  Google Scholar 

  15. De Souza, A., Wang, J.Z., and Dehesh, K., Retrograde signals: integrators of interorganellar communication and orchestrators of plant development, Annu. Rev. Plant Biol., 2017, vol. 68, pp. 85–108.

    Article  CAS  PubMed  Google Scholar 

  16. Dietzel, L., Gläßer, C., Liebers, M., Hiekel, S., Courtois, F., Czarnecki, O., Schlicke, H., Zubo, Y., Börner, T., Mayer, K., Grimm, B., and Pfannschmidt, T., Identification of early nuclear target genes of plastidial redox signals that trigger the long-term response of Arabidopsis to light quality shifts, Mol. Plant, 2015, vol. 8, pp. 1237–1252.

    Article  CAS  PubMed  Google Scholar 

  17. Bobik, K. and Burch-Smith, T.M., Chloroplast signaling within, between and beyond cells, Front. Plant Sci., 2015, vol. 6: 781.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Z.W., Zhang, G.C., Zhu, F., Zhang, D.W., and Yuan, S., The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses, Planta, 2015, vol. 242, pp. 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  19. Karpinska, B., Alomrani, S.O., and Foyer, C.H., Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signaling, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, vol. 372: 20160392. https://doi.org/10.1098/rstb.2016.0392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foyer, C.H., Ruban, A.V., and Noctor, G., Viewing oxidative stress through the lens of oxidative signalling rather than damage, Biochem. J., 2017, vol. 474, pp. 877–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossi, F.R., Krapp, A.R., Bisaro, F., Maiale, S.J., Pieckenstain, F.L., and Carrillo, N., Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea, Plant J., 2017, vol. 92, pp. 761–773.

    Article  CAS  PubMed  Google Scholar 

  22. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.

    Article  CAS  Google Scholar 

  23. Sinetova, M.A. and Los, D.A., Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers, Mol. BioSyst., 2016, vol. 12, pp. 3254–3258.

    Article  CAS  PubMed  Google Scholar 

  24. Erickson, J.L., Kantek, M., and Schattat, M.H., Plastid–nucleus distance alters the behavior of stromules, Front. Plant Sci., 2017, vol. 8: 1135.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whalley, H.J. and Knight, M.R., Calcium signatures are decoded by plants to give specific gene responses, New Phytol., 2013, vol. 197, pp. 690–693.

    Article  CAS  PubMed  Google Scholar 

  26. Kmiecik, P., Leonardelli, M., and Teige, M., Novel connections in plant organellar signalling link different stress responses and signalling pathways, J. Exp. Bot., 2016, vol. 67, pp. 3793–3807.

    Article  CAS  PubMed  Google Scholar 

  27. Gollan, P.J., Tikkanen, M., and Aro, E.M., Photosynthetic light reactions: integral to chloroplast retrograde signaling, Curr. Opin. Plant Biol., 2015, vol. 27, pp. 180–191.

    Article  CAS  PubMed  Google Scholar 

  28. Guo, H., Feng, P., Chi, W., Sun, X., Xu, X., Li, Y., Ren, D., Lu, C., Rochaix, J.D., Leister, D., and Zhang, L., Plastid–nucleus communication involves calcium-modulated MAPK signaling, Nat. Commun., 2016, vol. 7: 12173.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Colombo, M., Tadini, L., Peracchio, C., Ferrari, R., and Pesaresi, P., GUN1, a jack-of-all-trades in chloroplast protein homeostasis and signaling, Front. Plant Sci., 2016, vol. 7: 1427.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, G.Z., Chalvin, C., Hoelscherb, M., Meyer, E.H., Wu, X.N., and Bocka, R., Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1, Plant Physiol., 2018, vol. 176, pp. 2472–2495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, X., Feng, P., Xu, X., Guo, H., Ma, J., Chi, W., Lin, R., Lu, C., and Zhang, L., A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus, Nat. Commun., 2011, vol. 2: 477.

    Article  CAS  PubMed  Google Scholar 

  32. Adam, Z., Plastid intramembrane proteolysis, Biochim. Biophys. Acta, 2015, vol. 1847, pp. 910–914.

    Article  CAS  PubMed  Google Scholar 

  33. Hirosawa, Y., Ito-Inaba, Y., and Inaba, T., Ubiquitin-proteasome-dependent regulation of bidirectional communication between plastids and the nucleus, Front. Plant Sci., 2017, vol. 8: 310.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tokumaru, M., Adachi, F., Toda, M., Ito-Inaba, Y., Yazu, F., Hirosawa, Y., Sakakibara, Y., Suiko, M., Kakizaki, T., and Inaba, T., Ubiquitin-proteasome dependent regulation of the GOLDEN2-LIKE 1 transcription factor in response to plastid signals, Plant Physiol., 2017, vol. 173, pp. 524–535.

    Article  CAS  PubMed  Google Scholar 

  35. Martín, G., Leivar, P., Ludevid, D., Tepperman, J., Quail, P.H., and Monte, E., Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network, Nat. Commun., 2016, vol. 7: 11431.

  36. Tang, X., Miao, M., Niu, X., Zhang, D., Cao, X., Jin, X., Zhu, Y., Fan, Y., Wang, H., Liu, Y., Sui, Y., Wang, W., Wang, A., Xiao, F., Giovannoni, J., and Liu, Y., Ubiquitin-conjugated degradation of golden 2‑like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato, New Phytol., 2016, vol. 209, pp. 1028–1039.

    Article  CAS  PubMed  Google Scholar 

  37. Cookson, P.J., Kiano, J.W., Shipton, C.A., Fraser, P.D., Romer, S., Schuch, W., Bramley, P.M., and Pyke, K.A., Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato, Planta, 2003, vol. 217, pp. 896–903.

    Article  CAS  PubMed  Google Scholar 

  38. Huang, D., Lin, W., Deng, B., Ren, Y., and Miao, Y., Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis, Int. J. Mol. Sci., 2017, vol. 18: 2352.

    Article  CAS  PubMed Central  Google Scholar 

  39. Ren, Y., Li, Y., Jiang, Y., Wu, B., and Miao, Y., Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis, Mol. Plant, 2017, vol. 10, pp. 749–763.

    Article  CAS  PubMed  Google Scholar 

  40. Kucharewicz, W., Distelfeld, A., Bilger, W., Müller, M., Munné-Bosch, S., Hensel, G., and Krupinska, K., Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1, J. Exp. Bot., 2017, vol. 68, pp. 983–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yurina, N.P., Sharapova, L.S., and Odintsova, M.S., Structure of plastid genomes of photosynthetic eukaryotes, Biochemistry (Moscow), 2017, vol. 82, pp. 678–691.

    CAS  PubMed  Google Scholar 

  42. Feng, P., Guo, H., Chi, W., Chai, X., Sun, X., Xu, X., Ma, J., Rochaix, J.D., Leister, D., Wang, H., Lu, C., and Zhang, L., Chloroplast retrograde signal regulates flowering, Proc. Natl. Acad. Sci. USA, 2016, vol. 113, pp. 10708–10713.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present work was prepared with the partial financial support of the program of the Presidium of the Russian Academy of Sciences no. 18 Molecular and Cell Biology and Postgenome Technologies of the Russian Foundation for Basic Research (grants no. 16-04-01626 and 19-04-00798) and a Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Yurina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Andreev

Abbreviations: ABA—abscisic acid; CAS—Ca2+-binding protein of chloroplasts; β-CC—β-cyclocitral; ER—endoplasmic reticulum; ET—ethylene; ETC—electron transport chain; JA—jasmonate acid; MEcPP—methyleritrolcyclodiphosphate; PAP—phosphoadenosine-5-phosphate; PPR—pentatricopeptide repeat; ROS—reactive oxygen species; RS—retrograde signal; RSG—retrograde signaling; SA—salicylic acid; SU—subunit; TF—transcriptional factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurina, N.P., Odintsova, M.S. Chloroplast Retrograde Signaling System. Russ J Plant Physiol 66, 509–520 (2019). https://doi.org/10.1134/S1021443719040149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719040149

Keywords:

Navigation