Skip to main content
Log in

Exogenous Melatonin Protects Canola Plants from Toxicity of Excessive Copper

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Physiological mechanisms of canola (Brassica napus L., cv. Westar) plant protection afforded by melatonin (at 0.1–100 μM) from copper salts (at 10–100 μM) were studied. Plants were cultivated on Hoagland–Snyder medium. At the age of 5 weeks, they were subjected to melatonin, copper sulfate, or their combination for 7 days. It was found that excessive copper in a nutrient medium inhibited the dry biomass accumulation against the control by 25–85%. Copper sulfate diminished the content of chlorophylls and carotenoids and functional activity of the thylakoid membranes in the chloroplasts. It increased 2.0–2.5 times the lipid peroxidation (LPO) intensity and the proline level up to 20 times. Melatonin reduced the changes caused by copper, and the degree of the protection depended on melatonin and CuSO4 concentrations. It was found that melatonin decreased the oxidative stress and proline accumulation, both induced by CuSO4. At first, we established the positive correlation (with the coefficient 0.8240) between the level of oxidative stress and proline content in the presence of CuSO4. Possible mechanisms of protection by melatonin and its biological role under conditions of technogenic stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPO:

lipid peroxidation

MDA:

malondialdehyde

NPQ:

nonphotochemical quenching

ROS:

reactive oxygen species

PSII:

photosystem II

ФPSII:

photosynthetic quantum yield for PSII

F v/F m :

maximal quantum yield

References

  1. Hardeland, R., Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction, Sci. World J., 2012, vol. 2012: 640389.

    Article  CAS  Google Scholar 

  2. Johns, J.R. and Platts, J.A., Theoretical insight into the antioxidant properties of melatonin and derivatives, Org. Biomol. Chem., 2014, vol. 12, pp. 7820–7827.

    Article  PubMed  CAS  Google Scholar 

  3. Arnao, M.B. and Hernandez-Ruiz, J., Functions of melatonin in plants: a review, J. Pineal Res., 2015, vol. 59, pp. 133–150.

    Article  PubMed  CAS  Google Scholar 

  4. Posmyk, M.M. and Janas, K.M., Melatonin in plants, Acta Physiol. Plant., 2009, vol. 31, pp. 1–11.

    Article  CAS  Google Scholar 

  5. Hardeland, R., Melatonin in plants—diversity of levels and multiplicity of functions, Front. Plant Sci., 2016, vol. 7: 198. doi 10.3389/fpls.2016.00198

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G.A., Fu, C., and Ren, S., Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems, PLoS One, 2014, vol. 9: e93462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Garcia, J.J., Lorez-Pingarron, L., Almeida-Souza, P., Tres, F., Escudero, P., Garcia-Gil, F.A., Tan, D.X., Reiter, R.J., Ramires, J.M., and Bernal-Perez, M., Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review, J. Pineal Res., 2014, vol. 56, pp. 225–237.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, Y.P., Yang, S.J., and Chen, Y.Y., Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery, Biol. Plant., 2017, vol. 61, pp. 571–578.

    Article  CAS  Google Scholar 

  9. Galano, A., Medina, M.E., and Tan, D.X., Melatonin and its metabolite as copper chelating agents and their role in inhibiting oxidative stress: a physiochemical analysis, J. Pineal Res., 2015, vol. 58, pp. 107–116.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., and Guo, Y.D., Roles of melatonin in abiotic stress resistance in plants, J. Exp. Bot., 2015, vol. 66, pp. 647–656.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, Q., An, B., Shi, H., Luo, H., and He, C., High concentration of melatonin regulates leaf development by suppressing cell proliferation and endoreduplication in Arabidopsis, Int. J. Mol. Sci., 2017, vol. 18: e991. doi 10.3390/ijms18050991

    Article  PubMed  CAS  Google Scholar 

  12. Yruela, I., Copper in plants: acquisition, transport and interactions, Funct. Plant Biol., 2009, vol. 36, pp. 409–430.

    Article  CAS  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  14. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  15. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. Kinetics and 18 stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  16. Voronin, P.Yu., Experimental installation for measurements of chlorophyll fluorescence, CO2 exchange, and transpiration of a detached leaf, Russ. J. Plant Physiol., 2014, vol. 61, pp. 269–273.

    Article  CAS  Google Scholar 

  17. Schreiber, U., Chlorophyll Fluorescence and Photosynthetic Energy Conversion: Simple Introductory Experiments with the TEACHING-PAM Chlorophyll Fluorometer, Effeltrich: Heinz Walz Gmb, 1997.

    Google Scholar 

  18. Arnao, M.B. and Hernandez-Ruiz, J., Chemical stress by different agents affects the melatonin content in barley roots, J. Pineal Res., 2009, vol. 46, pp. 295–299.

    Article  PubMed  CAS  Google Scholar 

  19. Zlobin, I.E., Kholodova, V.P., Rakhmankulova, Z.F., and Kuznetsov, Vl.V., Brassica napus responses to shortterm excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene nramp4 involved in stabilization of photosystem II, Photosynth. Res., 2015, vol. 125, pp. 141–150.

    Article  PubMed  CAS  Google Scholar 

  20. Koca-Caliskan, U., Aka, C., and Bop, E., Melatonin in edible and no-edible plants, Turk. J. Pharm., 2017, vol. 14, pp. 75–83.

    Article  CAS  Google Scholar 

  21. Hasan, K., Ahammed, G.J., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J., and Zhou, J., Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatin biosynthesis, vacuolar sequestration, and antioxidant potential of Solanum lycopersicum L., Front. Plant Sci., 2015, vol. 6: 601. doi 10.3389/fpls.2015.00601

    Google Scholar 

  22. Voronin, P.Yu. and Fedoseeva, G.P., Stomatal control of photosynthesis in detached leaves of woody and herbaceous plants, Russ. J. Plant Physiol., 2012, vol. 59, pp. 281–286.

    Article  CAS  Google Scholar 

  23. Signorelli, S., Coitino, E.L., Borsani, O., and Monsa, J., Molecular mechanisms for reactions between ·OH radicals and proline, J. Phys. Chem., 2014, vol. 118, pp. 137–147.

    Article  CAS  Google Scholar 

  24. Kuznetsov, Vl.V. and Shevyakova, N.I., Proline under stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 274–288.

    CAS  Google Scholar 

  25. Szabados, L. and Savoure, A., Proline: a multifunctional amino acid, Trends Plant Sci., 2009, vol. 15, pp. 89–97.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, J., Shafi, M., Li, S., Wang, Y., Wu, J., Ye, Z., Peng, D., Yan, W., and Liu, D., Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens), Sci. Rep., 2015, vol. 5, pp. 135–154.

    Google Scholar 

  27. Aly, A.A. and Mohamed, A.A., The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro, Aust. J. Crop. Sci., 2012, vol. 6, pp. 541–549.

    CAS  Google Scholar 

  28. Antoniou, C., Chatzimichail, G., Xenofontus, R., Pavlou, J.J., Panagiotou, E., Christou, A., and Fotopoulos, V., Melatonin systemically ameliorates droughtinduced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism, J. Pineal Res., 2017, vol. 62, no. 4: e12401. doi 10.1111/jpi.12401

    Article  CAS  Google Scholar 

  29. Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F., Proline mechanisms of stress survival, Antioxid. Redox Signal., 2013, vol. 19, pp. 998–1011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sinha, S., Skukla, V.P., and Krishna, V., Percentage distribution and structural elucidation of quaternary metal chelates of proline with IMDA and uracil in aqueous medium, Inorg. Chem., 2016, vol. 11, pp. 58–64.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Kuznetsov.

Additional information

Original Russian Text © V.P. Kholodova, S.V. Vasil’ev, M.V. Efimova, P.Yu. Voronin, Z.F. Rakhmankulova, E.Yu. Danilova, Vl.V. Kuznetsov, 2018, published in Fiziologiya Rastenii, 2018, Vol. 65, No. 6, pp. 463–471.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholodova, V.P., Vasil’ev, S.V., Efimova, M.V. et al. Exogenous Melatonin Protects Canola Plants from Toxicity of Excessive Copper. Russ J Plant Physiol 65, 882–889 (2018). https://doi.org/10.1134/S1021443718060080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718060080

Keywords

Navigation