Skip to main content
Log in

Piriformospora indica Alleviates Salinity by Boosting Redox Poise and Antioxidative Potential of Tomato

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

More than 20% of irrigated land has been influenced by salt stress, decreasing crop production. In this research, we investigated the effect of different levels of salinity (0, 50, 100 and 150 mM NaCl) and the efficiency of Piriformospora indica on growth, biochemical traits, antioxidative defense system in tomato (Solanum lycopersicum L.). NaCl stress reduced chlorophyll content, height and biomass of plants. Higher level of salinity (150 mM) declined the plant height by 22.65%, total dry weight by 56.44% and total chlorophyll by 44.34%, however, P. indica inoculation raised plant height by 43.47%, dry weight by 69.23% and total chlorophyll content by 48.09%. Salinity stress increased H2O2, malondialdehyde (MDA), superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) level in leaves and roots tomato seedlings. However, P. indica inoculation reduced H2O2, MDA and superoxide anion and enhanced DPPH compared to non-inoculated plants at all NaCl levels. The total phenol and flavonoids increased with NaCl treatment. On the other hand, the total phenolic and flavonoid increased more in P. indica inoculated plants compared to non-inoculated ones. Moreover, inoculation of P. indica implicated noteworthy improvement of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) activity in tomato upon salinity. Notably, colonization with P. indica significantly improved the content of reduced ascorbic acid (AsA), glutathione (GSH) and redox ratio in the tomato plants under salinity resulting in reduced redox state. Our findings confirmed that salinity had negative effect on tomato seedling; however, P. indica inoculation increased tolerance to salinity by improving the content of phenolic compounds, non-enzymatic antioxidants, and increasing the activity of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbic acid

CAT:

catalase

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

DPPH:

DPPH—1,1-diphenyl-2-picrylhydrazyl

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

MDA:

malondialdehyde

MDHAR:

monodehydroascorbate reductase

POD:

guaiacol peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  1. Porcel, R., Aroca, R., and Ruiz-Lozano, J.M., Salinity stress alleviation using arbuscular mycorrhizal fungi. A review, Agron. Sustain. Dev., 2012, vol. 32, pp. 181–200.

    Article  CAS  Google Scholar 

  2. Ahmad, P., Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity, Arch. Agron. Soil Sci., 2010, vol. 56, pp. 575–588.

    Article  CAS  Google Scholar 

  3. Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., and Sharma, S., Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress, Crit. Rev. Biotechnol., 2010, vol. 30, pp. 161–175.

    Article  PubMed  CAS  Google Scholar 

  4. Rasool, S., Ahmad, A., Siddiqi, T.O., and Ahmad, P., Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress, Acta Physiol. Plant., 2013, vol. 35, pp. 1039–1050.

    Article  CAS  Google Scholar 

  5. Kumar, M., Yadav, V., Tuteja, N., and Johri, A.K., Antioxidant enzyme activities in maize plants colonized with Piriformospora indica, Microbiology, 2009, vol. 155, pp. 780–790.

    Article  PubMed  CAS  Google Scholar 

  6. Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M., Varma, A., Oelmüller, R., Tuteja, N., and Johri, A.K., Piriformospora indica rescues growth diminution of rice seedlings during high salt stress, Plant Signal. Behav., 2013, vol. 8. doi 10.4161/psb.26891

  7. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.-H., The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 13 386–13 391.

    Article  CAS  Google Scholar 

  8. Bagheri, A.A., Saadatmand, S., Niknam, V., Nejadsatari, T., and Babaeizad, V., Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress, Int. J. Adv. Biol. Biomed. Res., 2013, vol. 1, pp. 1337–1350.

    CAS  Google Scholar 

  9. He, Z., He, C., Zhang, Z., Zou, Z., and Wang, H., Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress, Colloids Surf. B. Biointerfaces, 2007, vol. 59, pp. 128–133.

    Article  PubMed  CAS  Google Scholar 

  10. Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F., and Poschenrieder, C., Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants, Plant Soil, 2010, vol. 331, pp. 313–327.

    Article  CAS  Google Scholar 

  11. Ghorbanli, M., Ebrahimzadeh, H., and Sharifi, M., Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean, Biol. Plant., 2004, vol. 48, pp. 575–581.

    Article  CAS  Google Scholar 

  12. Abdel Latef, A.A. and He, C., Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress, Acta Physiol. Plant., 2011, vol. 33, pp. 1217–1225.

    Article  CAS  Google Scholar 

  13. Arnon, D.I., Copper enzymes in isolated chloroplasts, polyphenoloxidase Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Phillips, J.M. and Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesicular- arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc., 1970, vol. 55, pp. 158–161.

    Article  Google Scholar 

  15. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants, Plant Sci., 2000, vol. 151, pp. 59–66.

    Article  CAS  Google Scholar 

  16. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  17. Elstner, E.F. and Heupel, A., Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase, Anal. Biochem., 1976, vol. 70, pp. 616–620.

    Article  PubMed  CAS  Google Scholar 

  18. Brand-Williams, W., Cuvelier, M.E., and Berset, C., Use of a free radical method to evaluate antioxidant activity, LWT—Food Sci. Technol., 1995, vol. 28, pp. 25–30.

    Article  CAS  Google Scholar 

  19. Chun, O.K., Kim, D.O., and Lee, C.Y., Superoxide radical scavenging activity of the major polyphenols in fresh plums, J. Agric. Food Chem., 2003, vol. 51, pp. 8067–8072.

    Article  PubMed  CAS  Google Scholar 

  20. Jia, Z., Tang, M., and Wu, J., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem., 1999, vol. 64, pp. 555–559.

    Article  Google Scholar 

  21. Gossett, D.R., Millhollon, E.P., and Lucas, M.C., Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton, Crop Sci., 1994, vol. 34, pp. 706–714.

    Article  CAS  Google Scholar 

  22. Griffith, O.W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem., 1980, vol. 106, pp. 207–212.

    Article  PubMed  CAS  Google Scholar 

  23. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  24. Luck, H., Catalase, in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., New York: Academic, 1971, pp. 885–894.

    Google Scholar 

  25. Miyake, C. and Asada, K., Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids, Plant Cell Physiol., 1992, vol. 33, pp. 541–553.

    CAS  Google Scholar 

  26. Carlberg, I. and Mannervik, B., Glutathione reductase, Methods Enzymol., 1985, vol. 113, pp. 484–490.

    Article  PubMed  CAS  Google Scholar 

  27. Evelin, H., Kapoor, R., and Giri, B., Arbuscular mycorrhizal fungi in alleviation of salt stress: a review, Ann. Bot., 2009, vol. 104, pp. 1263–1280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kohler, J., Hernández, J.A., Caravaca, F., and Roldán, A., Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress, Environ. Exp. Bot., 2009, vol. 65, pp. 245–252.

    Article  CAS  Google Scholar 

  29. Aroca, R., Ruiz-Lozano, J.M., Zamarreño, Á.M., Paz, J.A., García-Mina, J.M., Pozo, M.J., and López-Ráez, J.A., Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants, J. Plant Physiol., 2013, vol. 170, pp. 47–55.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, T., Sheng, M., Wang, C.Y., Chen, H., Li, Z., and Tang, M., Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery, Photosynthetica, 2015, vol. 53, pp. 250–258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Razavi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, A., Razavi, S.M., Omran, V.O.G. et al. Piriformospora indica Alleviates Salinity by Boosting Redox Poise and Antioxidative Potential of Tomato. Russ J Plant Physiol 65, 898–907 (2018). https://doi.org/10.1134/S1021443718060079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718060079

Keywords

Navigation