Skip to main content
Log in

Volatile Organic Compound Analysis of Host and Non-Host Poplars for Trypophloeus klimeschi (Coleoptera: Curculionidae: Ipinae)

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Trypophloeus klimeschi Eggers was first discovered in Xinjiang Province and had strong selection specificity for Populus alba var. pyramidalis Bunge. There was an outbreak of this beetle in the northwest shelter forest of China, resulting in significant economic losses and loss of ecological benefits. Based on a prior long-term field investigation, T. klimeschi had a different extent of injuries for different ages of P. alba var. pyramidalis and other Populus in the same area were not selected by T. klimeschi. To further explore the specificity volatile compounds, this study involved selecting host and non-host trees to analyse the volatile chemical profile of host and non-host poplars of T. klimeschi. The main volatile compounds of the host poplar P. alba var. pyramidalis for different physiological statuses and those of three other non-host poplars (P. alba L., P. tomentosa Carr., and P. dakuanensis Hsu) were analysed through solid-phase micro extraction (SPME) coupled with thermal desorption and gas chromatography-mass spectrometry (GC-MS). The major compound groups were aldehydes, esters, alcohols, ketones, phenols, terpenes and alkanes. Comparative analysis of the changes in the different physiological stages of P. alba var. pyramidalis and other non-host Populus volatile substances was conducted, and the results showed that 2-hydroxy-benzaldehyde, nonanal, decanal, 2-methyl-butanal, (Z)-3-hexen-1-ol benzoate, methyl benzoate, methyl salicylate, geraniol and salicyl alcohol might act as attractants for T. klimeschi, and 2-hexenal, hexanal, 2-cyclohexen-1-one, caryophyllene, eugenol, benzyl alcohol, and eucalyptol could be deterrents for T. klimeschi. These experiments may lead to the optimisation of a synthetic lure that may be used to detect and monitor T. klimeschi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SPME:

solid phase micro extraction

GC-MS:

gas chromatography-mass spectrometry

DBH:

diameter at breast height

VOCs:

volatile compounds

References

  1. Cao, Y., Luo, Z., Wang, S., and Zhang, P., Bionomics and control of Trypophloeus klimeschi, Entomol. Knowledge, 2004, vol. 41, pp. 36–38.

    Google Scholar 

  2. Clavijo, M.A., Irmisch, S., Reinecke, A., Boeckler, G.A., Veit, D., Reichelt, M., and Unsicker, S.B., Herbivoreinduced volatile emission in black poplar: regulation and role in attracting herbivore enemies, Plant Cell Environ., 2014, vol. 37, pp. 1909–1923.

    Article  Google Scholar 

  3. Jerkovic, I. and Mastelic, J., Volatile compounds from leaf-buds of Populus nigra L. (Salicaceae), Phytochemistry, 2003, vol. 63, pp. 109–113.

    Article  PubMed  CAS  Google Scholar 

  4. Guo, X., Yuan, G., Jiang, J., Luo, M., and Ma, J., Chemical components of volatiles form withered black poplar leaves with different physiological age, Chin. J. Appl. Ecol., 2005, vol. 16: 1822.

    CAS  Google Scholar 

  5. Kessler, A. and Baldwin, I.T., Defensive function of herbivore-induced plant volatile emissions in nature, Science, 2001, vol. 291, pp. 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  6. Tansey, J.A., McClay, A.S., Cole, D.E., and Keddie, B.A., Evidence for the influence of conspecific chemical cues on Aphthona nigriscutis (Coleoptera: Chrysomelidae) behaviour and distribution, Biocontol, 2005, vol. 50, pp. 343–358.

    Article  Google Scholar 

  7. Heath, R.R., Landolt, P.J., Dueben, B., and Lenczewski, B., Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths, Environ. Entomol., 1992, vol. 21, pp. 854–859.

    Article  CAS  Google Scholar 

  8. Ling, N., Tang, J.G., Yin, Y.S., Zhang, F., An, Y.L., Jiangyin, E.E.I., and Jiangsu, E.E.I., Electroantennogram responses of Clostera anastomosis adults to plant volatile of Populus nigra, Jiangsu J. Agric. Sci., 2014, vol. 3, pp. 514–519.

    Google Scholar 

  9. Leal, W.S., Barbosa, R.M., Xu, W., Ishida, Y., Syed, Z., Latte, N., and Furtado, A., Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes, PloS One, 2008, vol. 3, no. 8: e3045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Arnaud, L., Lognay, G., Verscheure, M., Leenaers, L., Gaspar, C., and Haubruge, E., Is dimethyldecanal a common aggregation pheromone of Tribolium flour beetles? J. Chem. Ecol., 2002, vol. 28, pp. 523–532.

    Article  PubMed  CAS  Google Scholar 

  11. Morawo, T. and Fadamiro, H., Identification of key plant-associated volatiles emitted by Heliothis virescens, larvae that attract the parasitoid, Microplitis croceipes: implications for parasitoid perception of odor blends, J. Chem. Ecol., 2016, vol. 42, pp. 1–10.

    Article  CAS  Google Scholar 

  12. Croft, K., Juttner, F., and Slusarenko, A.J., Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris leaves inoculated with Pseudomonas syringae pv. phaseolicola, Plant Physiol., 1993, vol. 101, pp. 13–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang, J., Tian, H., Sun, H., and Wang, X., Antifungal activity of trans-2-hexenal against Penicillium cyclopium by a membrane damage mechanism, J. Food Biochem., 2017, vol. 41, pp. 12–19.

    CAS  Google Scholar 

  14. Chen, Y., Analyzing blends of herbivore-induced volatile organic compounds with factor analysis: revisiting “cotton plant, Gossypium hirsutum L. defense in response to nitrogen fertilization,” J. Econ. Entomol., 2013, vol. 106, pp. 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  15. Prokopy, R.J., Hu, X., Jang, E.B., Vargas, R.I., and Warthen, J.D., Attraction of mature Ceratitis capitata, females to 2-heptanone, a component of coffee fruit odor, J. Chem. Ecol., 1998, vol. 24, pp. 1293–1304.

    Article  CAS  Google Scholar 

  16. Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., and Wood, K., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, Plant Cell, 2000, vol. 12, pp. 949–961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Deng, S.S., Yi, J., Cao, Y.Z., Luo, Z.X., Wang, W., and Li, K.B., Electroantennographic and behavioral responses of Holotrichia oblita to plant volatiles, Plant Prot., 2011, vol. 37, pp. 62–66.

    CAS  Google Scholar 

  18. Boch, R. and Shearer, D.A., Identification of geraniol as the active component in the Nassanoff pheromone of the honey bee, Nature, 1962, vol. 194, pp. 704–706.

    Article  CAS  Google Scholar 

  19. Chinta, S., Dickens, J.C., and Aldrich, J.R., Olfactory reception of potential pheromones and plant odors by tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), J. Chem. Ecol., 1994, vol. 20, pp. 3251–3267.

    Article  PubMed  CAS  Google Scholar 

  20. Prates, H.T., Santos, J.P., Waquil, J.M., Fabris, J.D., Oliveira, A.B., and Foster, J.E., Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst), J. Stored Prod. Res., 1998, vol. 34, pp. 243–249.

    Article  CAS  Google Scholar 

  21. Gouinguené, S.P. and Turlings, T.C.J., The effects of abiotic factors on induced volatile emissions in corn plants, Plant Physiol., 2002, vol. 129, pp. 1296–1307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Huang, Y., Ho, S.H., Lee, H.C., and Yap, Y.L., Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), J. Stored Prod. Res., 2002, vol. 38, pp. 403–412.

    Article  CAS  Google Scholar 

  23. Xiao, C., Luo, F., and Wang, H.Y., Attraction of cotton bollworm, Helicoverpa armigera to o-hydroxybenzyl alcohol in field, Entomol. Knowledge, 2002, vol. 39, pp. 303–304.

    CAS  Google Scholar 

  24. Kobayashi, T., Nishimura, K., and Fujita, T., Effects of the a-cyano group in the benzyl alcohol moiety on insecticidal and neurophysiological activities of pyrethroid esters, Pestic. Biochem. Phys., 1989, vol. 35, pp. 231–243.

    Article  CAS  Google Scholar 

  25. Rudinsky, J.A. and Michael, R.R., Sound production in Scolytidae: 'rivalry' behaviour of male Dendroctonus beetles, J. Insect. Physiol., 1974, vol. 20, pp. 1219–1230.

    Article  PubMed  CAS  Google Scholar 

  26. Pureswaran, D.S. and Borden, J.H., New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae), Chemoecology, 2004, vol. 14, pp. 67–75.

    Article  CAS  Google Scholar 

  27. Devi, K.P., Nisha, S.A., Sakthivel, R., and Pandian, S.K., Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane, J. Ethnopharmacol., 2010, vol. 130, pp. 107–115.

    Article  PubMed  CAS  Google Scholar 

  28. Chami, N., Bennis, S., Chami, F., Aboussekhra, A., and Remmal, A., Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo, Oral Microbiol. Immun., 2005, vol. 20, pp. 106–111.

    Article  CAS  Google Scholar 

  29. Flores, N., Jiménez, I.A., Giménez, A., Ruiz, G., Gutiérrez, D., Bourdy, G., and Bazzocchi, I.L., Benzoic acid derivatives from Piper species and their antiparasitic activity, J. Nat. Prod., 2008, vol. 71, pp. 1538–1543.

    Article  PubMed  CAS  Google Scholar 

  30. Pei, H.L., Determination on isopropyl salicylate antibacterial activity in vitro, J. Anhui Agric. Sci., 2008, vol. 34: 013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chen.

Additional information

The article is published in the original.

Supplementary materials are available for this article at doi 10.1134/S1021443718060067 and are accessible for authorized users.

Electronic supplementary material

11183_2018_7045_MOESM1_ESM.pdf

Volatile Organic Compound Analysis of Host and Non-host Poplars for Trypophloeus klimeschi (Coleoptera: Curculionidae: Ipinae)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Dai, L., Gao, J. et al. Volatile Organic Compound Analysis of Host and Non-Host Poplars for Trypophloeus klimeschi (Coleoptera: Curculionidae: Ipinae). Russ J Plant Physiol 65, 916–925 (2018). https://doi.org/10.1134/S1021443718060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718060067

Keywords

Navigation