Herald of the Russian Academy of Sciences

, Volume 87, Issue 2, pp 125–131 | Cite as

Status and prospects of marker-assisted and genomic plant breeding

  • N. A. Kolchanov
  • A. V. Kochetov
  • E. A. Salina
  • L. A. Pershina
  • E. K. Khlestkina
  • V. K. Shumny
Scientific Session of the RAS General Meeting

Abstract

State-of-the-art approaches to obtaining new plant varieties based on the potential of traditional breeding and the use of modern methods and achievements in genetics and genomics are considered. The opportunities and advantages of marker-assisted and genomic selection, as well as the importance of developing advanced methods in phenomics and genome editing, are discussed.

Keywords

genomic selection hybrid breeding marker-assisted selection molecular markers directed mutagenesis broadening genetic diversity plant breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Frary, T. C. Nesbitt, S. Grandillo, et al., “Fw2.2: A quantitative trait locus key to the evolution of tomato fruit size,” Science 289 (5476), 85–88 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Studer, Q. Zhao, J. Ross-Ibarra, and J. Doebley, “Identification of a functional transposon insertion in the maize domestication gene tb1,” Nat. Genet. 43, 1160–1163 (2011).CrossRefGoogle Scholar
  3. 3.
    D. M. Wills, C. J. Whipple, S. Takuno, et al., “From many to one: Genetic control of prolificacy during maize domestication,” PLoS Genet. 9 (6), e1003604 (2013).CrossRefGoogle Scholar
  4. 4.
    P. Bommert, N. S. Nagasawa, and D. Jackson, “Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus,” Nat. Genet. 45 (3), 334–337 (2013).CrossRefGoogle Scholar
  5. 5.
    J. F. Doebley, B. S. Gaut, and B. D. Smith, “The molecular genetics of crop domestication,” Cell 127, 1309–1321 (2006).CrossRefGoogle Scholar
  6. 6.
    R. A. McIntosh, Y. Yamazaki, J. Dubcovsky, et al., http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList. jsp. Cited November 1, 2016.Google Scholar
  7. 7.
    http://kniish.ru/sorta.html. Cited November 1, 2016.Google Scholar
  8. 8.
    http://nemchinowka.ru/sorta.html. Cited November 1, 2016.Google Scholar
  9. 9.
    L. V. Khotyleva, A. V. Kilchevsky, and M. N. Shapturenko, “Theoretical aspects of heterosis,” Vavilov. Zh. Genet. Selek. 20 (4), 482–492 (2016).Google Scholar
  10. 10.
    Current Technologies in Plant Molecular Breeding: A Guide Book of Plant Molecular Breeding for Researchers, Ed. by H.-J. Koh, S.-Y. Kwon, and M. Thomson (Springer, 2015).Google Scholar
  11. 11.
    http://icg.nsc.ru/sibniirs/novosib51/. Cited November 1, 2016.Google Scholar
  12. 12.
    USSR Inventor’s Certificate No. 1801, 1975.Google Scholar
  13. 13.
    USSR Inventor’s Certificate No. 60093, 2015.Google Scholar
  14. 14.
    D. P. Bebber, “Range-expanding pests and pathogens in a warming world,” Annu. Rev. Phytopathol. 53, 335–356 (2015).CrossRefGoogle Scholar
  15. 15.
    E. K. Khlestkina, “Molecular markers in genetic studies and breeding,” Vavilov. Zh. Genet. Selek. 17 (4/2), 1044–1054 (2013).Google Scholar
  16. 16.
    I. N. Leonova, “Molecular markers: Implementation in crop plant breeding for identification, introgression, and gene pyramiding,” Vavilov. Zh. Genet. Selek. 17 (2), 314–325 (2013).Google Scholar
  17. 17.
    E. A. Salina, I. G. Adonina, E. D. Badaeva, et al., “Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases,” Euphytica 204, 91–101 (2015).CrossRefGoogle Scholar
  18. 18.
    G. Mirzaghaderi, A. Houben, and E. D. Badaeva, “Molecular-cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat,” Mol. Cytogenet. 7 (2014).Google Scholar
  19. 19.
    E. M. Timonova, I. N. Leonova, M. S. Röder, and E. A. Salina, “Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome,” Mol. Breeding 31, 123–136 (2013).CrossRefGoogle Scholar
  20. 20.
    E. A. Salina, I. N. Leonova, E. B. Budashkina, and E. M. Egorova, RF Patent No. 2407283 (2009).Google Scholar
  21. 21.
    E. A. Salina, I. N. Leonova, and A. B. Shcherban’, RF Patent, No. 2535985 (2014).Google Scholar
  22. 22.
    R. Schlegel, “Hybrid breeding boosted molecular genetics in rye,” Vavilov. Zh. Genet. Selek. 19 (5), 589–603 (2015).Google Scholar
  23. 23.
    A. M. R. Ferrie and K. L. Caswell, “Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production,” Plant Cell, Tiss. Organ Culture 104, 301–309 (2010).CrossRefGoogle Scholar
  24. 24.
    E. L. Heffner, A. J. Lorenz, J.-L. Jannink, and M. E. Sorrells, “Plant breeding with genomic selection: Gain per unit time and cost,” Crop Science 50, 1681–1690 (2010).CrossRefGoogle Scholar
  25. 25.
    D. A. Afonnikov M. A. Genaev, A. V. Doroshkov, et al., “Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments,” Russ. J. Genet. 52 (7), 688–701 (2016).CrossRefGoogle Scholar
  26. 26.
    E. K. Khlestkina and V. K. Shumny, “Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 for plant genome editing,” Russ. J. Genet. 52 (7), 676–687 (2016).CrossRefGoogle Scholar
  27. 27.
    Z. Feng, B. Zhang, W. Ding, et al., “Efficient genome editing in plants using a CRISPR/Cas system,” Cell Res. 23, 1229–1232 (2013).CrossRefGoogle Scholar
  28. 28.
    J. F. Li, J. E. Norville, J. Aach, et al., “Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9,” Nat. Biotechnol. 31, 688–691 (2013).CrossRefGoogle Scholar
  29. 29.
    V. Nekrasov, B. Staskawicz, D. Weigel, et al., “Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease,” Nat. Biotechnol. 31, 691–693 (2013).CrossRefGoogle Scholar
  30. 30.
    Q. Shan, Y. Wang, J. Li, et al., “Targeted genome modification of crop plants using a CRISPR-Cas system,” Nat. Biotechnol. 31, 686–688 (2013).CrossRefGoogle Scholar
  31. 31.
    K. Xie and Y. Yang, “RNA-guided genome editing in plants using a CRISPR-Cas system,” Mol. Plant. 6 (6), 1975–1983 (2013).CrossRefGoogle Scholar
  32. 32.
    F. Nogué, K. Mara, C. Collonnier, and J. M. Casacuberta, “Genome engineering and plant breeding: Impact on trait discovery and development,” Plant Cell Rep. 35, 1475–1486 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Kolchanov
    • 1
    • 2
  • A. V. Kochetov
    • 1
    • 2
  • E. A. Salina
    • 1
  • L. A. Pershina
    • 1
    • 2
  • E. K. Khlestkina
    • 1
    • 2
  • V. K. Shumny
    • 1
    • 2
  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations