Detecting Hydrophobic Interactions in Star-Shaped Amphiphilic Copolymers by the Viscometric Method

Abstract

The amphiphilic copolymers of N-methyl-N-vinylacetamide and alkylated N-methyl-N-vinylamine combining a hydrophilic backbone and hydrophobic side chains of various lengths and carrying a charge are studied. The results are compared, and the features of the application of known methods for determining the intrinsic viscosity in aqueous and organic solvents are considered. Conclusions are drawn about the intramolecular organization in the molecular chains of the studied copolymers and the manifestation of hydrophobic interactions in macromolecules with different lengths of alkyl radicals. The conditions under which the amphiphilic character of copolymers does not manifest itself are revealed. It is proposed to consider the sign and magnitude of the second derivative of the dependence ln ηr = f(c[η]) as a measure of the hydrophobicity of copolymer chains.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    L. Tian, L. Yam, N. Zhou, H. Tat, and K. E. Uhrich, Macromolecules 37, 538 (2004).

    CAS  Article  Google Scholar 

  2. 2

    V. P. Torchilin, J. Controlled Release 73, 137 (2001).

    CAS  Article  Google Scholar 

  3. 3

    G. Vilar, J. Tulla-Puche, and F. Albericio, Curr. Drug Delivery 9, 367 (2012).

    CAS  Article  Google Scholar 

  4. 4

    L. Ma, C. J. Zhou, Q. Z. Yang, X. G. Yang, C. Zhang, and L. Q. Liao, Curr. Org. Chem 18, 1937 (2014).

    CAS  Article  Google Scholar 

  5. 5

    E. F. Panarin, N. A. Lavrov, M. V. Solovskii, and L. I. Shal’nova, Polymers – Carriers of Bioactive Substances (Professiya, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  6. 6

    C. A. Lipinski, J. Pharmacol. Toxicol. Methods 44, 235 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    O. G. Schramm, G. M. Pavlov, H. P. van Erp, M. A. R. Meier, R. Hoogenboom, and U. S. Schubert, Macromolecules 42, 1808 (2009).

    CAS  Article  Google Scholar 

  8. 8

    B. E. Kidd, X. L. Li, R. C. Piemonte, T. J. Cooksey, A. Singh, M. L. Robertson, and L. A. Madsen, Macromolecules 50, 4335 (2017).

    CAS  Article  Google Scholar 

  9. 9

    T. Zinn, L. Willner, K. D. Knudsen, and R. Lund, Macromolecules 50, 7321 (2017).

    CAS  Article  Google Scholar 

  10. 10

    D. Abdelhamid, H. Arslan, Y. Y. Zhang, and K. E. Uhrich, Polym. Chem. 5, 1457 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    G. M. Pavlov, K. Knop, O. V. Okatova, and U. S. Schubert, Macromolecules 46, 8671 (2013).

    CAS  Article  Google Scholar 

  12. 12

    D. E. Larin, A. A. Lazutin, E. N. Govorun, and V. V. Vasilevskaya, Langmuir 32, 7000 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    V. V. Vasilevskaya, V. A. Markov, G. Brinke, and A. R. Khokhlov, Macromolecules 41, 7722 (2008).

    CAS  Article  Google Scholar 

  14. 14

    M. K. Glagolev, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer 125, 234 (2017).

    CAS  Article  Google Scholar 

  15. 15

    G. M. Pavlov, O. V. Okatova, A. V. Michailova, N. N. Ulianova, I. I. Gavrilova, and E. F. Panarin, Macromol. Biosci. 10, 790 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    G. M. Pavlov, O. V. Okatova, I. I. Gavrilova, N. N. Ulianova, and E. F. Panarin, Polym. Sci., Ser. A 55, 699 (2013).

    CAS  Article  Google Scholar 

  17. 17

    G. M. Pavlov, O. V. Okatova, A. S. Gubarev, I. I. Gavrilova, and E. F. Panarin, Macromolecules 47, 2748 (2014).

    CAS  Article  Google Scholar 

  18. 18

    G. M. Pavlov, G. F. Kolbina, O. V. Okatova, I. I. Gavrilova, and E. F. Panarin, Dokl. Chem. 463, 181 (2015).

    CAS  Article  Google Scholar 

  19. 19

    G. M. Pavlov, O. A. Dommes, O. V. Okatova, I. I. Gavrilova, and E. F. Panarin, Phys. Chem. Chem. Phys. 20, 9975 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    O. V. Okatova, I. I. Gavrilova, N. N. Ulianova, E. F. Panarin, and G. M. Pavlov, Russ. J. Appl. Chem. 85, 1239 (2012).

    CAS  Article  Google Scholar 

  21. 21

    E. F. Panarin and I. I. Gavrilova, Vysokomol. Soedin., Ser. B 19, 251 (1977).

    CAS  Google Scholar 

  22. 22

    P. Schuck, Biophys. J. 78, 1606 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    V. N. Tsvetkov, Rigid-Chain Polymers: Hydrodynamic and Optical Properties in Solution (Plenum Press, New York, 1989).

    Google Scholar 

  24. 24

    P. N. Lavrenko and O. V. Okatova, Vysokomol. Soedin., Ser. A 19, 2640 (1977).

    CAS  Google Scholar 

  25. 25

    G. M. Pavlov, I. Perevyazko, O. V. Okatova, and U. S. Schubert, Methods 54, 124 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    G. M. Pavlov, in Analytical Ultracentrifugation: Instrumentation, Software, and Applications, Ed. by S. Uchiyama, F. Arisaka, W. F. Stafford, and T. Laue (Springer, Tokyo, 2016), p. 269.

    Google Scholar 

  27. 27

    O. A. Dommes, O. V. Okatova, A. A. Kostina, I. I. Gavrilova, E. F. Panarrin, and G. M. Pavlov, Polym. Sci., Ser. C 59, 125 (2017).

    Article  Google Scholar 

  28. 28

    H. Staudinger, “Nobel Lecture (1953): Macromolecular Chemistry,” in Nobel Lectures, Chemistry 1942–1962 (Elsevier, Amsterdam, 1964), p. 397.

    Google Scholar 

  29. 29

    E. O. Kraemer, Ind. Eng. Chem. 30, 1200 (1938).

    CAS  Article  Google Scholar 

  30. 30

    A. Ya. Malkin, Rheol. Acta 12, 486 (1973).

    Article  Google Scholar 

  31. 31

    G. V. Vinogradov and A. Y. Malkin, Rheology of Polymers: Viscoelasticity and Flow of Polymers (Springer-Verlag, Berlin; Heidelberg, 1980).

    Google Scholar 

  32. 32

    V. P. Budtov, Physical Chemistry of Polymer Solutions (Khimiya, St. Petersburg, 1992).

    Google Scholar 

  33. 33

    J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, and J. des Cloizeaux, Macromolecules 7, 863 (1974).

    Article  Google Scholar 

  34. 34

    R. G. Kirste, W. A. Kruse, and J. Schelten, Makromol. Chem. 162, 299 (1973).

    Article  Google Scholar 

  35. 35

    D. G. H. Ballard, G. D. Wignall, and J. Schelten, Eur. Polym. J. 9, 965 (1973).

    CAS  Article  Google Scholar 

  36. 36

    H. Hayashi, F. Hamada, and A. Nakajima, Macromolecules 7, 959 (1974).

    CAS  Article  Google Scholar 

  37. 37

    K. F. Freed, S. F. Edwards, and M. Warner, J. Chem. Phys. 64, 5132 (1976).

    CAS  Article  Google Scholar 

  38. 38

    T. M. Birshtein, A. M. Skvortsov, and A. A. Sariban, Vysokomol. Soedin., Ser. B 19, 74 (1977).

    Google Scholar 

  39. 39

    T. M. Birshtein, A. M. Skvortsov, and A. A. Sariban, Polymer 24, 1145 (1983).

    CAS  Article  Google Scholar 

  40. 40

    V. G. Baranov, S. A. Agranova, and Yu. V. Brestkin, Vysokomol. Soedin., Ser. B 29, 206 (1987).

    CAS  Google Scholar 

  41. 41

    G. M. Pavlov, A. S. Gubarev, I. I. Zaitseva, and M. A. Sibileva, Russ. J. Appl. Chem. 79, 1407 (2006).

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 18-13-00324).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. M. Pavlov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavlov, G.M., Gosteva, A.A., Dommes, O.A. et al. Detecting Hydrophobic Interactions in Star-Shaped Amphiphilic Copolymers by the Viscometric Method. Polym. Sci. Ser. A 63, 1–7 (2021). https://doi.org/10.1134/S0965545X21010077

Download citation