Polymer Science Series A

, Volume 49, Issue 6, pp 737–744 | Cite as

Influence of the counterion size on swelling and collapse of polyelectrolyte gel

  • A. S. Bodrova
  • I. I. Potemkin
Theory, Modelling


A theory that predicts the effect of the counterion size on the swelling and collapse of a weakly charged polyelectrolyte gel was developed. In addition to excluded-volume interactions between monomer units of the gel, the theory involves the counterion-monomer unit and counterion-counterion interactions in terms of the virial approximation. The character of interactions between different units in the system varies from repulsion to attraction depending on the type of solvent, counterion, and dielectric permittivity of the solvent. For solvents with a low permittivity, the effect of condensation of counterions resulting in the formation of ion pairs is taken into account.


Polymer Science Series Monomer Unit Relative Temperature Network Unit Collapse State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Dusek and D. Patterson, J. Polym. Sci., Part A 6, 1209 (1968).Google Scholar
  2. 2.
    T. Tanaka, Phys. Rev. Lett. 40, 820 (1978).CrossRefGoogle Scholar
  3. 3.
    T. Tanaka, D. J. Fillmore, S. T. Sun, et al., Phys. Rev. Lett. 45, 1636 (1980).CrossRefGoogle Scholar
  4. 4.
    I. Ohmine and T. Tanaka, J. Chem. Phys. 77, 5725 (1982).CrossRefGoogle Scholar
  5. 5.
    A. R. Khokhlov, Polymer 21, 376 (1980).CrossRefGoogle Scholar
  6. 6.
    A. R. Khokhlov, S. G. Starodubtzev, and V. V. Vasilevskaya, Adv. Polym. Sci. 109, 123 (1993).Google Scholar
  7. 7.
    V. V. Vasilevskaya and A. R. Khokhlov, Mathematical Methods of Polymer Investigation (Pushchino, 1982) [in Russian].Google Scholar
  8. 8.
    V. V. Vasilevskaya, V. R. Ryabina, S. G. Starodubtsev, and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 31, 713 (1989).Google Scholar
  9. 9.
    V. V. Vasilevskaya and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 33, 885 (1991).Google Scholar
  10. 10.
    V. V. Vasilevskaya and A. R. Khokholov, Macromolecules 25, 384 (1992).CrossRefGoogle Scholar
  11. 11.
    V. V. Vasilevskaya, E. Yu. Kramarenko, and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 33, 1062 (1991).Google Scholar
  12. 12.
    A. R. Khokhlov, E. Yu. Kramarenko, E. E. Makhaeva, and S. G. Starodubtsev, Makromol. Chem., Theory Simul. 1, 105 (1992).CrossRefGoogle Scholar
  13. 13.
    S. G. Starodubtsev and V. R. Ryabina, Vysokomol. Soedin., Ser. A 29, 2281 (1987).Google Scholar
  14. 14.
    S. G. Starodubtsev, N. R. Pavlova, V. V. Vasilevskaya, and A. R. Khokhlov, Vysokomol. Soedin., Ser. B 27, 485 (1985).Google Scholar
  15. 15.
    A. R. Khokhlov, E. Yu. Kramarenko, E. E. Makhaeva, and S. G. Starodubtsev, Macromolecules 25, 4779 (1992).CrossRefGoogle Scholar
  16. 16.
    O. E. Fillipova, E. E. Makhaeva, and S. G. Starodubtsev, Polymer Science 34, 602 (1992) [Vysokomol. Soedin., Ser. A 34, 82 (1992)].Google Scholar
  17. 17.
    K. Mita, T. Okubo, and N. Ise, J. Chem. Soc., Faraday Trans. 1 72, 1627 (1976).CrossRefGoogle Scholar
  18. 18.
    H. Morawetz and Y. Wang, Macromolecules 21, 107 (1988).CrossRefGoogle Scholar
  19. 19.
    S. Sasaki, Y. Yamazoe, and H. Maeda, Langmuir 16, 7126 (2000).CrossRefGoogle Scholar
  20. 20.
    H. P. Gregor and M. Frederick, J. Polym. Sci. 23, 451 (1957).CrossRefGoogle Scholar
  21. 21.
    I. Kagawa and H. P. Gregor, J. Polym. Sci. 23, 477 (1957).CrossRefGoogle Scholar
  22. 22.
    Y. Tran and P. Auroya, Eur. Phys. J., E 5, 65 (2001).CrossRefGoogle Scholar
  23. 23.
    T. Abraham, S. Giasson, J. F. Gohy, et al., Macromolecules 33, 6051 (2000).CrossRefGoogle Scholar
  24. 24.
    J. Yamanaka, S. Hashimoto, H. Matsuoka, et al., Langmuir 8, 338 (1992).CrossRefGoogle Scholar
  25. 25.
    S. G. Starodoubtsev, A. R. Khokhlov, E. L. Sokolov, and B. Chu, Macromolecules 28, 3930 (1995).CrossRefGoogle Scholar
  26. 26.
    D. Kawaguchi and M. Satoh, Macromolecules 32, 7828 (1999).CrossRefGoogle Scholar
  27. 27.
    S. Sasaki and S. Koga, J. Phys. Chem., B 106, 11893 (2002).Google Scholar
  28. 28.
    S. Sasaki, S. Koga, R. Imabayashi, and H. Maeda, J. Phys. Chem., B 105, 5852 (2001).CrossRefGoogle Scholar
  29. 29.
    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002).CrossRefGoogle Scholar
  30. 30.
    A. R. Khokhlov and E. Yu. Kramarenko, Macromol. Theory Simul. 3, 45 (1994).CrossRefGoogle Scholar
  31. 31.
    G. E. Boyd and K. Bunzl, J. Am. Chem. Soc. 96, 2054 (1974).CrossRefGoogle Scholar
  32. 32.
    I. F. Miller, F. Bernstein, and H. P. Gregor, J. Chem. Phys. 43, 1783 (1965).CrossRefGoogle Scholar
  33. 33.
    J. Feitelson, J. Phys. Chem. 66, 1295 (1962).CrossRefGoogle Scholar
  34. 34.
    J. Jiang, H. Liu, and Y. Hu, J. Chem. Phys. 110, 4952 (1999).CrossRefGoogle Scholar
  35. 35.
    T. Yamaue, H. Mukai, K. Asaka, and M. Doi, Macromolecules 38, 1349 (2005).CrossRefGoogle Scholar
  36. 36.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; American Institute of Physics, Ithaca, 1994).Google Scholar
  37. 37.
    T. Kihara, Rev. Mod. Phys. 25, 831 (1953).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. S. Bodrova
    • 1
  • I. I. Potemkin
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations