Abstract
This study investigated, for the first time, thermal transformations of heavy oil asphaltenes using a stepwise thermal decomposition method under conditions that enable a researcher to properly consider variations in the bond energies of asphaltene molecules and to minimize the occurrence of secondary reactions with newly-formed products. Based on the thermolysis material balance, it was found that at temperatures up to 290°C, the asphaltene conversion rate exceeds 90%, and asphaltene transformations involve the formation of considerable amounts of gaseous compounds, liquid hydrocarbons, and resins, the total content of which reaches 50 wt %. The structural variations in asphaltenes during thermolysis were evaluated by 1H NMR spectroscopy, elemental analysis, and cryoscopic measurement of average molecular weight in naphthalene. It was demonstrated, using various physicochemical analytical methods, that the stepwise thermolysis of asphaltenes is accompanied by a 1.5-fold increase in the average molecular weight of their molecules due to recombination reactions of newly-formed macroradicals. After thermolysis at 230°C, all the tested asphaltenes display an almost identical distribution of carbon atoms among the aromatic, naphthenic, and paraffinic fragments of their molecules regardless of the composition and structure of the initial asphaltenes. The asphaltene reactivity up to 230°C is determined by the number of sulfur- and oxygen-containing fragments labile under the imposed conditions. At higher temperatures, the key feature crucial for asphaltene reactivity is the carbon skeleton structure of asphaltene molecules.
This is a preview of subscription content, access via your institution.







REFERENCES
- 1
Abukova, L.A. and Shuster, V.L., Expozits. Neft’ Gaz, 2016, no. 7, pp. 12–15.
- 2
V’yukov, M.G., Vopros. Otrasl. Upravlen., 2016, no. 3, pp. 49–59.
- 3
Sabbah, H., Morrow, A.L., Pomerantz, A.E., and Zare, R.N., Energy Fuels, 2011, vol. 25, no. 4, pp. 1597–1604. https://doi.org/10.1021/ef101522w
- 4
Grin’ko, A.A. and Golovko, A.K., Petrol. Chem., 2011, vol. 51, no. 3, pp. 192–202. https://doi.org/10.1134/S0965544111030066
- 5
Antipenko, V.R., Grin’ko, A.A., and Melenevskii, V.N., Petrol. Chem., 2014, vol. 54, no. 3, pp. 178–186. https://doi.org/10.1134/S0965544114030037
- 6
Schule, B., Meyer, G., Pena, D., Mullins, O.C., and Gross, L., J. Am. Chem. Soc., 2015, vol. 137, no. 31, pp. 9870–9876. https://doi.org/10.1021/jacs.5b04056
- 7
Tang, W., Hurt, M.R., Sheng, H., Riedeman, J.S., Borton, D.J., Slater, P., and Kenttamaa, H.I., Energy Fuels, 2015, vol. 29, no. 3, pp. 1309–1314. https://doi.org/10.1021/ef501242k
- 8
Cheshkova, T.V., Sergun, V.P., Kovalenko, E.Yu., Gerasimova, N.N., Sagachenko, T.A., and Min, R.S., Energy Fuels, 2019, vol. 33, no. 9, pp. 7971–7982. https://doi.org/10.1021/acs.energyfuels.9b00285
- 9
Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, p. 993. https://doi.org/10.1070/RC2011v080n10ABEH004174
- 10
Ghosh, A.K., Chaudhuri, P., Kumar, B., and Panja, S.S., Fuel, 2016, vol. 185, pp. 541–554. https://doi.org/10.1016/j.fuel.2016.08.031
- 11
Mart’yanov, O.N., Larichev, Yu.V., Morozov, E.V., Trukhan, S.N., and Kazaryan, S.G., Russ. Chem. Rev., 2017, vol. 86, no. 11, p. 999. https://doi.org/10.1070/RCR4742
- 12
Khadzhiev, S.N. and Shpirt, M.Ya., Mikroelementy v neftyakh i produktakh ikh pererabotki (Trace Elements in Oils and Products of Their Processing), Moscow: Nauka, 2012.
- 13
Khalikova, D.A., Petrov, S.M., and Bashkirtseva, N.Yu., Vestn. Kazan. Tekhnol. Univ., 2013, no. 3, pp. 217–221.
- 14
Ancheyta, H., Modeling of Processes and Reactors for Upgrading of Heavy Petroleum, Boca-Raton: CRC Press, 2013.
- 15
Ramirez-Corredores, M.M., The Science and Technology of Unconventional Oils: Finding Refining Opportunities, London: Academic Press, 2017.
- 16
Lyadov, A.S. and Petrukhina, N.N., Russ. J. Appl. Chem., 2018, vol. 91, no. 12, pp. 1912–1921. https://doi.org/10.1134/S1070427218120029
- 17
Magomedov, R.N., Pripakhailo, A.V., Maryutina, T.A., Shamsullin, A.I., and Ainullov, T.S., Russ. J. Appl. Chem., 2019, vol. 92, no. 13, pp. 1634–1648. https://doi.org/10.1134/S1070427219120036
- 18
Hauser, A., Bahzad, D., Stanislaus, A., and Behbahani, M., Energy Fuels, 2008, vol. 22, no. 1, pp. 449–454. https://doi.org/10.1021/ef700477a
- 19
Dmitriev, D.E. and Golovko, А.K., Petrol. Chem., 2010, vol. 50, no. 2, pp. 106–113. https://doi.org/10.1134/S0965544110020040
- 20
Kopytov, M.A., Golovko, A.K., Kirik, N.P., and Anshits, A.G., Petrol. Chem., 2013, vol. 53, no. 1, pp. 14–19. https://doi.org/10.1134/S0965544113010076
- 21
Al Humaidan, F.S., Hauser, A., Rana, M.S., and Lababidi, H.M.S., Energy Fuels, 2016, vol. 30, no. 4, pp. 2892–2903. https://doi.org/10.1021/acs.energyfuels.6b00261
- 22
Al Humaidan, F.S., Hauser, A., Rana, M.S., and Lababidi, H.M.S., Energy Fuels, 2017, vol. 31, no. 4, pp. 3812–3820. https://doi.org/10.1021/acs.energyfuels.6b03433
- 23
Chacon-Patino, M.L., Blanco-Tirado, C., Orrego-Ruiz, J.A., Gomez-Escudero, A., and Combariza, M.Y., Energy Fuels, 2015, vol. 29, no. 10, pp. 6330–6341. https://doi.org/10.1021/acs.energyfuels.5b01510
- 24
Leon, A.Y., Guzman, A., Laverde, D., Chaudhari, R.V., Subramaniam, B., and Bravo-Suarez, J.J., Energy Fuels, 2017, vol. 31, no. 4, pp. 3868–3877. https://doi.org/10.1021/acs.energyfuels.7b00078
- 25
Voronetskaya, N.G., Pevneva, G.S., Korneev, D.S., and Golovko, A.K., Petrol. Chem., 2020, vol. 60, no. 2, pp. 166–173. https://doi.org/10.1134/S0965544120020103
- 26
Grin’ko, A.A. and Golovko, A.K., Petrol. Сhem., 2014, vol. 54, no. 1, pp. 42–47. https://doi.org/10.1134/S0965544113040051
- 27
Korneev, D.S., Melenevskii, V.N., Pevneva, G.S., and Golovko, A.K., Petrol. Сhem., 2018, vol. 58, no. 3, pp. 179–185. https://doi.org/10.1134/S096554411803012X
- 28
Korneev, D.S., Pevneva, G.S., and Golovko, A.K., Khim. Interes. Ustoich. Razvit., 2018, vol. 26, no. 2, pp. 225–230. https://doi.org/10.15372/KhUR20180214
- 29
Naghizada, N., Prado, G.H.C., and de Klerk, A., Energy Fuels, 2017, vol. 31, no. 7, pp. 6800–6811. https://doi.org/10.1021/acs.energyfuels.7b00661
- 30
Korneev, D.S., Pevneva, G.S., and Golovko, A.K., Zh. Sibir. Federal. Univ., Ser: Khim., 2019, vol. 12, no. 1, pp. 101–117. 10.17516/1998-2836-0110
- 31
Korneev, D.S., Pevneva, G.S., and Golovko, A.K., AIP Conference Proceeding, 2018, vol. 2051, p. 020134. https://doi.org/10.1063/1.5083377
- 32
Korneev, D.S. and Pevneva, G.S., Khim. Interes. Ustoich. Razvit. 2020, vol. 28, no. 3, pp. 337–342. https://doi.org/10.15372/KhUR2020238
- 33
Korneev, D.S., Candidate Sci. (Chem.) Dissertation, Tomsk, 2019.
Funding
The study described here was performed within the framework of the state assignment for IPC SB RAS (project V.46.2.2) with financial support from the Ministry of Science and Higher Education of the Russian Federation.
Author information
Affiliations
Corresponding author
Ethics declarations
The authors declare no conflict of interest requiring disclosure in this article.
Rights and permissions
About this article
Cite this article
Korneev, D.S., Pevneva, G.S. & Voronetskaya, N.G. Effects of the Composition and Molecular Structure of Heavy Oil Asphaltenes on Their Reactivity in Thermal Decomposition Processes. Pet. Chem. 61, 152–161 (2021). https://doi.org/10.1134/S0965544121020158
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- heavy oil
- asphaltenes
- composition
- structure
- thermolysis
- decomposition
- reactivity
- resins
- hydrocarbons
- coke