Effects of the Composition and Molecular Structure of Heavy Oil Asphaltenes on Their Reactivity in Thermal Decomposition Processes


This study investigated, for the first time, thermal transformations of heavy oil asphaltenes using a stepwise thermal decomposition method under conditions that enable a researcher to properly consider variations in the bond energies of asphaltene molecules and to minimize the occurrence of secondary reactions with newly-formed products. Based on the thermolysis material balance, it was found that at temperatures up to 290°C, the asphaltene conversion rate exceeds 90%, and asphaltene transformations involve the formation of considerable amounts of gaseous compounds, liquid hydrocarbons, and resins, the total content of which reaches 50 wt %. The structural variations in asphaltenes during thermolysis were evaluated by 1H NMR spectroscopy, elemental analysis, and cryoscopic measurement of average molecular weight in naphthalene. It was demonstrated, using various physicochemical analytical methods, that the stepwise thermolysis of asphaltenes is accompanied by a 1.5-fold increase in the average molecular weight of their molecules due to recombination reactions of newly-formed macroradicals. After thermolysis at 230°C, all the tested asphaltenes display an almost identical distribution of carbon atoms among the aromatic, naphthenic, and paraffinic fragments of their molecules regardless of the composition and structure of the initial asphaltenes. The asphaltene reactivity up to 230°C is determined by the number of sulfur- and oxygen-containing fragments labile under the imposed conditions. At higher temperatures, the key feature crucial for asphaltene reactivity is the carbon skeleton structure of asphaltene molecules.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    Abukova, L.A. and Shuster, V.L., Expozits. Neft’ Gaz, 2016, no. 7, pp. 12–15.

    Google Scholar 

  2. 2

    V’yukov, M.G., Vopros. Otrasl. Upravlen., 2016, no. 3, pp. 49–59.

    Google Scholar 

  3. 3

    Sabbah, H., Morrow, A.L., Pomerantz, A.E., and Zare, R.N., Energy Fuels, 2011, vol. 25, no. 4, pp. 1597–1604. https://doi.org/10.1021/ef101522w

    CAS  Article  Google Scholar 

  4. 4

    Grin’ko, A.A. and Golovko, A.K., Petrol. Chem., 2011, vol. 51, no. 3, pp. 192–202. https://doi.org/10.1134/S0965544111030066

    CAS  Article  Google Scholar 

  5. 5

    Antipenko, V.R., Grin’ko, A.A., and Melenevskii, V.N., Petrol. Chem., 2014, vol. 54, no. 3, pp. 178–186. https://doi.org/10.1134/S0965544114030037

    CAS  Article  Google Scholar 

  6. 6

    Schule, B., Meyer, G., Pena, D., Mullins, O.C., and Gross, L., J. Am. Chem. Soc., 2015, vol. 137, no. 31, pp. 9870–9876. https://doi.org/10.1021/jacs.5b04056

    CAS  Article  Google Scholar 

  7. 7

    Tang, W., Hurt, M.R., Sheng, H., Riedeman, J.S., Borton, D.J., Slater, P., and Kenttamaa, H.I., Energy Fuels, 2015, vol. 29, no. 3, pp. 1309–1314. https://doi.org/10.1021/ef501242k

    CAS  Article  Google Scholar 

  8. 8

    Cheshkova, T.V., Sergun, V.P., Kovalenko, E.Yu., Gerasimova, N.N., Sagachenko, T.A., and Min, R.S., Energy Fuels, 2019, vol. 33, no. 9, pp. 7971–7982. https://doi.org/10.1021/acs.energyfuels.9b00285

    CAS  Article  Google Scholar 

  9. 9

    Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, p. 993. https://doi.org/10.1070/RC2011v080n10ABEH004174

    CAS  Article  Google Scholar 

  10. 10

    Ghosh, A.K., Chaudhuri, P., Kumar, B., and Panja, S.S., Fuel, 2016, vol. 185, pp. 541–554. https://doi.org/10.1016/j.fuel.2016.08.031

    CAS  Article  Google Scholar 

  11. 11

    Mart’yanov, O.N., Larichev, Yu.V., Morozov, E.V., Trukhan, S.N., and Kazaryan, S.G., Russ. Chem. Rev., 2017, vol. 86, no. 11, p. 999. https://doi.org/10.1070/RCR4742

    Article  Google Scholar 

  12. 12

    Khadzhiev, S.N. and Shpirt, M.Ya., Mikroelementy v neftyakh i produktakh ikh pererabotki (Trace Elements in Oils and Products of Their Processing), Moscow: Nauka, 2012.

  13. 13

    Khalikova, D.A., Petrov, S.M., and Bashkirtseva, N.Yu., Vestn. Kazan. Tekhnol. Univ., 2013, no. 3, pp. 217–221.

    Google Scholar 

  14. 14

    Ancheyta, H., Modeling of Processes and Reactors for Upgrading of Heavy Petroleum, Boca-Raton: CRC Press, 2013.

  15. 15

    Ramirez-Corredores, M.M., The Science and Technology of Unconventional Oils: Finding Refining Opportunities, London: Academic Press, 2017.

  16. 16

    Lyadov, A.S. and Petrukhina, N.N., Russ. J. Appl. Chem., 2018, vol. 91, no. 12, pp. 1912–1921. https://doi.org/10.1134/S1070427218120029

    CAS  Article  Google Scholar 

  17. 17

    Magomedov, R.N., Pripakhailo, A.V., Maryutina, T.A., Shamsullin, A.I., and Ainullov, T.S., Russ. J. Appl. Chem., 2019, vol. 92, no. 13, pp. 1634–1648. https://doi.org/10.1134/S1070427219120036

    CAS  Article  Google Scholar 

  18. 18

    Hauser, A., Bahzad, D., Stanislaus, A., and Behbahani, M., Energy Fuels, 2008, vol. 22, no. 1, pp. 449–454. https://doi.org/10.1021/ef700477a

    CAS  Article  Google Scholar 

  19. 19

    Dmitriev, D.E. and Golovko, А.K., Petrol. Chem., 2010, vol. 50, no. 2, pp. 106–113. https://doi.org/10.1134/S0965544110020040

    Article  Google Scholar 

  20. 20

    Kopytov, M.A., Golovko, A.K., Kirik, N.P., and Anshits, A.G., Petrol. Chem., 2013, vol. 53, no. 1, pp. 14–19. https://doi.org/10.1134/S0965544113010076

    CAS  Article  Google Scholar 

  21. 21

    Al Humaidan, F.S., Hauser, A., Rana, M.S., and Lababidi, H.M.S., Energy Fuels, 2016, vol. 30, no. 4, pp. 2892–2903. https://doi.org/10.1021/acs.energyfuels.6b00261

    CAS  Article  Google Scholar 

  22. 22

    Al Humaidan, F.S., Hauser, A., Rana, M.S., and Lababidi, H.M.S., Energy Fuels, 2017, vol. 31, no. 4, pp. 3812–3820. https://doi.org/10.1021/acs.energyfuels.6b03433

    CAS  Article  Google Scholar 

  23. 23

    Chacon-Patino, M.L., Blanco-Tirado, C., Orrego-Ruiz, J.A., Gomez-Escudero, A., and Combariza, M.Y., Energy Fuels, 2015, vol. 29, no. 10, pp. 6330–6341. https://doi.org/10.1021/acs.energyfuels.5b01510

    CAS  Article  Google Scholar 

  24. 24

    Leon, A.Y., Guzman, A., Laverde, D., Chaudhari, R.V., Subramaniam, B., and Bravo-Suarez, J.J., Energy Fuels, 2017, vol. 31, no. 4, pp. 3868–3877. https://doi.org/10.1021/acs.energyfuels.7b00078

    CAS  Article  Google Scholar 

  25. 25

    Voronetskaya, N.G., Pevneva, G.S., Korneev, D.S., and Golovko, A.K., Petrol. Chem., 2020, vol. 60, no. 2, pp. 166–173. https://doi.org/10.1134/S0965544120020103

    CAS  Article  Google Scholar 

  26. 26

    Grin’ko, A.A. and Golovko, A.K., Petrol. Сhem., 2014, vol. 54, no. 1, pp. 42–47. https://doi.org/10.1134/S0965544113040051

    CAS  Article  Google Scholar 

  27. 27

    Korneev, D.S., Melenevskii, V.N., Pevneva, G.S., and Go­lovko, A.K., Petrol. Сhem., 2018, vol. 58, no. 3, pp. 179–185. https://doi.org/10.1134/S096554411803012X

    CAS  Article  Google Scholar 

  28. 28

    Korneev, D.S., Pevneva, G.S., and Golovko, A.K., Khim. Interes. Ustoich. Razvit., 2018, vol. 26, no. 2, pp. 225–230. https://doi.org/10.15372/KhUR20180214

    CAS  Article  Google Scholar 

  29. 29

    Naghizada, N., Prado, G.H.C., and de Klerk, A., Energy Fuels, 2017, vol. 31, no. 7, pp. 6800–6811. https://doi.org/10.1021/acs.energyfuels.7b00661

    CAS  Article  Google Scholar 

  30. 30

    Korneev, D.S., Pevneva, G.S., and Golovko, A.K., Zh. Sibir. Federal. Univ., Ser: Khim., 2019, vol. 12, no. 1, pp. 101–117. 10.17516/1998-2836-0110

    Google Scholar 

  31. 31

    Korneev, D.S., Pevneva, G.S., and Golovko, A.K., AIP Conference Proceeding, 2018, vol. 2051, p. 020134. https://doi.org/10.1063/1.5083377

    CAS  Article  Google Scholar 

  32. 32

    Korneev, D.S. and Pevneva, G.S., Khim. Interes. Ustoich. Razvit. 2020, vol. 28, no. 3, pp. 337–342. https://doi.org/10.15372/KhUR2020238

  33. 33

    Korneev, D.S., Candidate Sci. (Chem.) Dissertation, Tomsk, 2019.

Download references


The study described here was performed within the framework of the state assignment for IPC SB RAS (project V.46.2.2) with financial support from the Ministry of Science and Higher Education of the Russian Federation.

Author information



Corresponding author

Correspondence to D. S. Korneev.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korneev, D.S., Pevneva, G.S. & Voronetskaya, N.G. Effects of the Composition and Molecular Structure of Heavy Oil Asphaltenes on Their Reactivity in Thermal Decomposition Processes. Pet. Chem. 61, 152–161 (2021). https://doi.org/10.1134/S0965544121020158

Download citation


  • heavy oil
  • asphaltenes
  • composition
  • structure
  • thermolysis
  • decomposition
  • reactivity
  • resins
  • hydrocarbons
  • coke