Modeling and Optimization of Simulated Moving Bed for Paraxylene Purification

Abstract

The simulation and optimization of industrial-scale simulated moving bed for para-xylene purification from a mixture of C8 aromatics are presented. The separation process was modeled using true moving bed modeling strategy. The multi-objective teaching-learning-based optimization algorithm (MOTLBO) is improved by introducing alpha constrained technique, which is employed to optimize the yield of PX and consumption of desorbent. The improved MOTLBO has advantages in both convergence and distribution as compared to NSGA-II and MOTLBO. The optimized results suggest that the extract flowrate and consumption of desorbent should be increased, and simultaneously the step time and raffinate flowrate keep constant, so as to achieve a higher yield of PX.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Zhang, Z., Mazzotti, M., and Morbidelli, M., J. Chromatogr. A, 2003, vol. 989, p. 95. https://doi.org/

    CAS  Article  Google Scholar 

  2. 2

    Yu, H.W. and Ching, C.B., AICHE J., 2002, vol. 48, p. 2240. https://doi.org/10.1002/aic.690481014

  3. 3

    Kawajiri, Y. and Biegler, L.T., AICHE J., 2006, vol. 52, p. 1343. https://doi.org/10.1002/aic.10736

    CAS  Article  Google Scholar 

  4. 4

    Kurup, A.S., Hidajat, K., and Ray, A.K., Ind. Eng. Chem. Res., 2005, vol. 44, p. 5703. https://doi.org/10.1021/ie0488694

    CAS  Article  Google Scholar 

  5. 5

    Rao, R.V., Savsani, V.J., and Vakharia, D.P., Comp. Aided Des., 2011, vol. 43, p. 303. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  6. 6

    Rao, R.V., Savsani, V.J., and Vakharia, D.P., Inf. Sci., 2012, vol. 183, p. 1. https://doi.org/10.1016/j.ins.2011.08.006

    Article  Google Scholar 

  7. 7

    Niknam, T., Eng. Appl. Artif. Intell., 2012, vol. 25, p. 1577. https://doi.org/10.1016/j.engappai.2012.07.004

    Article  Google Scholar 

  8. 8

    Rao, R.V. and Patel, V., Appl. Math. Model., 2013, vol. 37, p. 1147. https://doi.org/10.1016/j.apm.2012.03.043

    Article  Google Scholar 

  9. 9

    Nayak, M.R., Nayak, C.K., and Rout, P.K., Procedia Tech., 2012, vol. 6, p. 255. https://doi.org/10.1016/j.protcy.2012.10.031

    Article  Google Scholar 

  10. 10

    Minceva, M. and Rodrigues, A., Ind. Eng. Chem. Res., 2002, vol. 41, p. 3454. https://doi.org/10.1021/ie010095t

    CAS  Article  Google Scholar 

  11. 11

    Yang, M.L., Wei, M., Hu, R., Ye, Z.C., and Qian, F., J. Chem. Ind. Eng. (China), 2013, vol. 64, p. 4335. https://doi.org/10.3969/j.issn.0438-1157.2013.12.010

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Basic Science Center Program: 61988101), International (Regional) Cooperation and Exchange Project (1720106008) and Natural science foundation of China (61873093, 61803158).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, M.L., Hu, R., Long, J. et al. Modeling and Optimization of Simulated Moving Bed for Paraxylene Purification. Pet. Chem. 61, 214–219 (2021). https://doi.org/10.1134/S0965544121020146

Download citation

Keywords:

  • MOTLBO
  • optimization
  • simulated moving bed
  • operation