Skip to main content
Log in

Modeling and Optimization of Simulated Moving Bed for Paraxylene Purification

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The simulation and optimization of industrial-scale simulated moving bed for para-xylene purification from a mixture of C8 aromatics are presented. The separation process was modeled using true moving bed modeling strategy. The multi-objective teaching-learning-based optimization algorithm (MOTLBO) is improved by introducing alpha constrained technique, which is employed to optimize the yield of PX and consumption of desorbent. The improved MOTLBO has advantages in both convergence and distribution as compared to NSGA-II and MOTLBO. The optimized results suggest that the extract flowrate and consumption of desorbent should be increased, and simultaneously the step time and raffinate flowrate keep constant, so as to achieve a higher yield of PX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhang, Z., Mazzotti, M., and Morbidelli, M., J. Chromatogr. A, 2003, vol. 989, p. 95. https://doi.org/

    Article  CAS  Google Scholar 

  2. Yu, H.W. and Ching, C.B., AICHE J., 2002, vol. 48, p. 2240. https://doi.org/10.1002/aic.690481014

  3. Kawajiri, Y. and Biegler, L.T., AICHE J., 2006, vol. 52, p. 1343. https://doi.org/10.1002/aic.10736

    Article  CAS  Google Scholar 

  4. Kurup, A.S., Hidajat, K., and Ray, A.K., Ind. Eng. Chem. Res., 2005, vol. 44, p. 5703. https://doi.org/10.1021/ie0488694

    Article  CAS  Google Scholar 

  5. Rao, R.V., Savsani, V.J., and Vakharia, D.P., Comp. Aided Des., 2011, vol. 43, p. 303. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  6. Rao, R.V., Savsani, V.J., and Vakharia, D.P., Inf. Sci., 2012, vol. 183, p. 1. https://doi.org/10.1016/j.ins.2011.08.006

    Article  Google Scholar 

  7. Niknam, T., Eng. Appl. Artif. Intell., 2012, vol. 25, p. 1577. https://doi.org/10.1016/j.engappai.2012.07.004

    Article  Google Scholar 

  8. Rao, R.V. and Patel, V., Appl. Math. Model., 2013, vol. 37, p. 1147. https://doi.org/10.1016/j.apm.2012.03.043

    Article  Google Scholar 

  9. Nayak, M.R., Nayak, C.K., and Rout, P.K., Procedia Tech., 2012, vol. 6, p. 255. https://doi.org/10.1016/j.protcy.2012.10.031

    Article  Google Scholar 

  10. Minceva, M. and Rodrigues, A., Ind. Eng. Chem. Res., 2002, vol. 41, p. 3454. https://doi.org/10.1021/ie010095t

    Article  CAS  Google Scholar 

  11. Yang, M.L., Wei, M., Hu, R., Ye, Z.C., and Qian, F., J. Chem. Ind. Eng. (China), 2013, vol. 64, p. 4335. https://doi.org/10.3969/j.issn.0438-1157.2013.12.010

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Basic Science Center Program: 61988101), International (Regional) Cooperation and Exchange Project (1720106008) and Natural science foundation of China (61873093, 61803158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M.L., Hu, R., Long, J. et al. Modeling and Optimization of Simulated Moving Bed for Paraxylene Purification. Pet. Chem. 61, 214–219 (2021). https://doi.org/10.1134/S0965544121020146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121020146

Keywords:

Navigation