Synthesis of Micro-Mesoporous ZSM-23 Zeolite

Abstract

Two procedures were suggested for preparing a micro-mesoporous zeolite of MTT topology (ZSM-23 type) with the molar ratio SiO2/Al2O3 = 100 in the presence of dimethylformamide as a template. The first procedure involves hydrothermal crystallization under the conditions ensuring the formation of nanosized crystals. The second procedure is postsynthetic treatment of the zeolite with a NaOH solution to increase the mesopore volume. Samples of ZSM-23 zeolites with the crystal size of 100–200 nm with improved textural characteristics (micropore volume up to 0.1 cm3 g–1, mesopore volume up to 0.70 cm3 g–1) were obtained in >85% yield based on the silica used. The acid characteristics of the synthesized samples are similar to those of the zeolites prepared using pyrrolidine, which is expensive and is not produced in Russia.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Vogt, E.T.C., Whiting, G.T., Chowdhury, A.D., and Weckhuysen, B.M., Adv. Catal., 2015, vol. 58, p. 143. https://doi.org/10.1016/bs.acat.2015.10.001

    CAS  Article  Google Scholar 

  2. 2

    Gerasimov, D.N., Fadeev, V.V., Loginova, A.N., and Lysenko, S.V., Catal. Ind., 2015, vol. 7, no. 2, p. 128. https://doi.org/10.1134/S2070050415020051

    Article  Google Scholar 

  3. 3

    Deldari, H., Appl. Catal. A: General, 2005, vol. 293, p. 1. https://doi.org/10.1016/j.apcata.2005.07.008

    CAS  Article  Google Scholar 

  4. 4

    Chen, Х., Xi, H., Lin, M., Jia, L., Hou, B., Li, D., and Niu, P., Int. J. Hydrogen Energy, 2019, vol. 44, p. 19762.

    CAS  Article  Google Scholar 

  5. 5

    Kumar, R. and Ratnasamy, P., J. Catal., 1989, vol. 116, p. 440. https://doi.org/10.1016/0021-9517(89)90110-3

    CAS  Article  Google Scholar 

  6. 6

    Nicholas, C.P., Appl. Catal. A: General, 2017, vol. 543, p. 82. https://doi.org/10.1016/j.apcata.2017.06.011

    CAS  Article  Google Scholar 

  7. 7

    Piryutko, L.V., Chernyavskii, V.S., Lysikov, A.I., Kharitonov, A.S., and Noskov, A.S., Russ. J. Appl. Chem., 2018, vol. 91, no. 12, p. 2030. https://doi.org/10.1134/S1070427218120157

    CAS  Article  Google Scholar 

  8. 8

    Thomas, J.M., Millward, G.R., White, D., and Ramdas, S., J. Chem Soc., Chem. Commun., 1988, p. 434.

  9. 9

    Parker, L. and Bibby, D., Zeolites, 1983, vol. 3, p. 8. https://doi.org/10.1016/0144-2449(83)90078-7

    CAS  Article  Google Scholar 

  10. 10

    Araya, A. and Lowe, B.M., US Patent 4705674, 1985.

  11. 11

    Plank, C.J., Rosinski, E.J., and Rubin, M.K., US Patent 4076842, 1978.

  12. 12

    Ahmad, M., US Patent 5332566, 1994.

  13. 13

    Ojo, A.F., Zhang, Y., Lei, G.-D., and Zones, S., US Patent 9573124, 2017.

  14. 14

    Kameshkov, A.V. and Gaile, A.A., Khim. Khim. Tekhnol. Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tech. Univ.), 2015, no. 29, p. 49. https://doi.org/10.15217/issn998984-9.2015.29.49

    Article  Google Scholar 

  15. 15

    Deldari, H., Appl. Catal. A: General, 2005, vol. 293, p. 1. https://doi.org/10.1016/j.apcata.2005.07.008

    CAS  Article  Google Scholar 

  16. 16

    Archer, R.H., Zones, S., and Davis, M.E., Micropor. Mesopor. Mater., 2010, vol. 130, p. 255. https://doi.org/10.1016/j.micromeso.2009.11.018

    CAS  Article  Google Scholar 

  17. 17

    Liu, Y., Wang, Z., Ling, Y., Li, X., Liu, Y., and Wu, P., Chin. J. Catal., 2009, vol. 30, p. 525. https://doi.org/10.1016/S1872-2067(08)60115-1

    CAS  Article  Google Scholar 

  18. 18

    Piryutko, L.V., Parfenov, M.V., Lysikov, A.I., and Gerasimov, E.Yu., Russ. J. Appl. Chem., 2019, vol. 92, no. 12, p. 1664.

    CAS  Article  Google Scholar 

  19. 19

    Wang, B., Tian, Z., Li, P., and Lin, L., Micropor. Mesopor. Mater., 2010, vol. 134, p. 203. https://doi.org/10.1016/j.micromeso.2010.06.001

    CAS  Article  Google Scholar 

  20. 20

    Holm, M.S., Taarning, E., Egeblad, K., and Christensen, C.H., Catal. Today, 2011, vol. 168, p. 3. https://doi.org/10.1016/j.cattod.2011.01.007

    CAS  Article  Google Scholar 

  21. 21

    Ivanova, I.I., Kuznetsov, A.S., Knyazeva, E.E., Fajula, F., Thibault-Starzyk, F., Fernandez, C., and Gilson, J.P., Catal. Today, 2011, vol. 168, p. 133. https://doi.org/10.1016/j.cattod.2010.11.091

    CAS  Article  Google Scholar 

  22. 22

    Van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong, K.P., Catal. Rev., 2003, vol. 45, p. 297. https://doi.org/10.1081/CR-120023908

    CAS  Article  Google Scholar 

  23. 23

    Perez-Ramírez, J., Christensen, C.H., Egeblad, K., Christensen, C.H., and Groen, J.C., Chem. Soc. Rev., 2008, vol. 37, p. 2530. https://doi.org/10.1039/B809030K

    Article  PubMed  Google Scholar 

  24. 24

    Silva, B.J.B., Sousa, L.V., Sarmento, L.R.A., Carvalho, R.P., Quintela, P.H.L., Pacheco, J.G.A., Fréty, R., and Silvaa, A.O.S., Micropor. Mesopor. Mater., 2019, vol. 290, p. 1. https://doi.org/10.1016/j.micromeso.2019.109647

    CAS  Article  Google Scholar 

  25. 25

    Moller, K. and Bein, T., Chem. Soc. Rev., 2013, vol. 42, p. 3689. https://doi.org/10.1039/c3cs35488a

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Valtchev, V. and Tosheva, L., Chem. Rev., 2013, vol. 113, no. 8, p. 6734. https://doi.org/10.1021/cr300439k

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Knyazeva, E.E., Dobryakova, I.V., Shkuropatov, A.V., Ponomareva, O.A., Kolyagin, Yu.G., and Ivanova, I.I., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, p. 1821. https://doi.org/10.1134/S1070427218110125

    CAS  Article  Google Scholar 

  28. 28

    Ahmed, M.H.M., Muraza, O., Al-Amer, A.M., and Yamani, Z.H., Micropor. Mesopor. Mater., 2016, vol. 227, p. 48.

    CAS  Article  Google Scholar 

  29. 29

    Zhai, M., Li, L., Ba, Y., Zhu, K., and Zhou, X., Catal. Today, 2019, vol. 329, p. 82.

    CAS  Article  Google Scholar 

  30. 30

    Zones, S.I., US Patent 5053373, 1991.

  31. 31

    Wu, Q., Wang, X., Meng, X., Yang, C., Liu, Y., Jin, Y., Yang, Q., and Xiao, F.S., Micropor. Mesopor. Mater., 2014, vol. 186, p. 106. https://doi.org/10.1016/j.micromeso.2013.11.043

    CAS  Article  Google Scholar 

  32. 32

    Treacy, M.M.J. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, 2007, 5th ed., p. 300.

  33. 33

    Smirnova, M.Yu., Piryutko, L.V., Brester, Yu.S., Parfenov, M.V., Kaichev, V.V., Klimov, O.V., and Noskov, A.S., Petrol. Chem., 2020, vol. 60, no. 2, p. 212. https://doi.org/10.1134/S0965544120020085

    CAS  Article  Google Scholar 

  34. 34

    Piryutko, L.V., Lazareva, S.V., Chernyavskii, V.S., Kharitonov, A.S., and Noskov, A.S., Petrol. Chem., 2019, vol. 59, no. 7, p. 726. https://doi.org/10.1134/S0965544119070144

    CAS  Article  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Boreskov Institute of Catalysis, SB RAS (project AAAA-A21-121011890074-4).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. V. Pirutko.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pirutko, L.V., Parfenov, M.V., Lysikov, A.I. et al. Synthesis of Micro-Mesoporous ZSM-23 Zeolite. Pet. Chem. (2021). https://doi.org/10.1134/S0965544121020080

Download citation

Keywords:

  • MTT zeolite
  • finely crystalline ZSM-23
  • template
  • hydrothermal crystallization