Skip to main content
Log in

Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental Article)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A three-stage process for the production of motor fuel (MT) components from lignocellulosic raw materials is described. In the first, pretreatment stage, lignocellulose is subjected to hydrolysis with cellulases followed by fermentation of the resulting sugars into ethanol; then, dilute ethanol solutions are concentrated by membrane vapor separation to obtain 70–80% solutions. At the third stage, aqueous ethanol solutions (water content 0–50%) in the presence of a Pd–Zn/Al2O3/MFI catalyst at 350°C and a space velocity of 0.6 h−1 are converted into alkanes, and С3–С8 olefins and С6–C12 aromatic compounds (MT components). It has been found that water in an amount of up to 30% in ethanol solutions effectively inhibits the detrimental hydrocarbon cracking and catalyst coking processes, thereby leading to a decrease in the formation of undesirable C1 and C2 products and an increase in the catalyst on-stream time to 100 h wherein the yield of the desired fraction is reduced only by 10–15%. The subsequent treatment of the catalyst surface with steam and hydrogen completely restores its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Q. Kang, L. Appels, T. Tan, and R. Dewil, Sci. World J., Article ID 298153 (2014). http://dx.doi.org/ 1-13. https://doi.org/10.1155/2014/298153

    Article  Google Scholar 

  2. G. M. Souza, R. L. Victoria, L. M. Verdade, et al., Bioenergy and Sustainability: Bridging and Gaps, Ed. by G. M. Souza , (Scope, Paris, 2015), p. 28.

    Google Scholar 

  3. L. M. Fulton, L. R. Lynd, A. Korner, et al., Biofuels Bioprod. Biorefin. 9, 476 (2015).

    Article  CAS  Google Scholar 

  4. N. Jordan, G. Boody, W. Broussard, et al., Science 316, 1570 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. B. P. Werling, T. L. Dickson, R. Isaacs, et al., Proc. Natl. Acad. Sci. U.S.A. 111, 1652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. R. Lynd, M. Sow, A. F. Chimphango, et al., Biofuels Biotechnol. 8, 18 (2015).

    Article  CAS  Google Scholar 

  7. M. Naqvi and J. Yan, First-Generation Biofuels: Handbook of Clean Energy Systems (Wiley, Hoboken, 2015).

    Book  Google Scholar 

  8. A. Gupta and J. P. Verma, Renew. Sustain. Energy Rev. 41, 550 (2015).

    Article  CAS  Google Scholar 

  9. T. Searchinger, R. Edwards, D. Mulligan, et al., Science 347 (6229), 1420 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. M. Enquist-Newman, A. M. E. Faust, D. D. Bravo, et al., Nature 505 (7482), 239 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. L. R. Lynd, X. Liang, M. J. Biddy, et al., Curr. Opin. Biotechnol. 45, 202 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. P.-M. Bondesson and M. Galbe, Biotechnol. Biofuels 9, 222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Chen, J. Zhao, and L. Xia, Biomass Bioenergy 33, 1381 (2009).

    Article  CAS  Google Scholar 

  14. P. Alvira, E. Tomas-Pejo, M. Ballesteros, and M. J. Negro, Bioresour. Technol. 101, 4851 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. M. Galbe and G. Zacchi, Biomass Bioenergy 46, 70 (2012).

    Article  CAS  Google Scholar 

  16. X. Meng and A. J. Ragauskas, Curr. Opin. Biotechnol. 27, 150 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. K. Gerbrandt, P. L. Chu, A. Simmonds, et al., Curr. Opin. Biotechnol. 38, 63 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. A. Guilliams, S. Pattathil, D. Willies, et al., Biotechnol. Biofuels 9, 30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Choi, C. W. Song, J. H. Shin, and S. Y. Lee, Metab. Eng. 28, 223 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. E. Joelsson, B. Erdei, M. Galbe, and O. Wallberg, Biotechnol Biofuels 9, 1 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. Mukherjee, J. Steensels, B. Lievens, et al., Appl. Microbiol. Biotechnol. 98, 9483 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. J. Nielsen and J. D. Keasling, Cell 164, 1185 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. R. Ledesma-Amaro and J. M. Nicaud, Trends Biotechnol. 34, 798 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. L. M. Vane, Biofuels Bioprod. Biorefin. 2, 553 (2008).

    Article  CAS  Google Scholar 

  25. T. Ezeji, C. Milne, and N. D. Price, Appl. Microbiol. Biotechnol. 85, 1697 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. A. G. Fadeev, Ya. A. Selinskaya, S. S. Kelley, et al., J. Membr. Sci. 186, 205 (2001).

    Article  CAS  Google Scholar 

  27. V. V. Teplyakov, V. S. Khotimskii, A. V. Yakovlev, et al., Catal. Ind. 3, 62 (2011).

    Article  Google Scholar 

  28. L. M. Vane and F. R. Alvarez, J. Chem. Technol. Biotechnol. 88, 1436 (2013).

    Article  CAS  Google Scholar 

  29. L. M. Vane, F. R. Alvarez, L. Rosenblum, and Sh. Govindaswamy, J. Chem. Technol. Biotechnol. 88, 1448 (2013).

    Article  CAS  Google Scholar 

  30. P. Pierrot, M. Fick, and J. M. Engasser, Biotechnol. Lett. 8, 253 (1986).

    Article  CAS  Google Scholar 

  31. L. M. Vane, J. Chem. Technol. Biotechnol. 80, 603 (2005).

    Article  CAS  Google Scholar 

  32. B. Freeman, Y. Yampolskii, and I. Pinnau, Materials Science of Membranes for Gas and Vapor Separation (Wiley, Chichester, 2006).

    Google Scholar 

  33. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2012).

    Book  Google Scholar 

  34. S. Sommer and Th. Melin, Chem. Eng. Sci. 60, 4509 (2005).

    Article  CAS  Google Scholar 

  35. S. Sommer and Th. Melin, Chem. Eng. Sci. 60, 4525 (2005).

    Article  CAS  Google Scholar 

  36. H. Zhou, Y. Su, X. Chen, and Y. Wan, Sep. Purif. Technol. 79, 3375 (2011).

    Article  CAS  Google Scholar 

  37. K. K. Sirkar, Ind. Eng. Chem. Res. 47, 5250 (2008).

    Article  CAS  Google Scholar 

  38. W. Kujawski, Polish J. Environ. Stud. 9, 13 (2000).

    CAS  Google Scholar 

  39. K. Neubauer, R. Dragomirova, M. Stohr, et al., J. Membr. Sci. 453, 100 (2014).

    Article  CAS  Google Scholar 

  40. A. V. Yakovlev, M. G. Shalygin, S. M. Matson, et al., J. Membr. Sci. 434, 99 (2013).

    Article  CAS  Google Scholar 

  41. V. V. Teplyakov and M. G. Shalygin, Pervaporation, Vapor Permeation and Membrane Distillation: Principles and Applications, Ed. by A. Basile, A. Figoli, and M. Khayet (Elsevier, Amsterdam, 2015), p. 177.

    Google Scholar 

  42. O. B. Borisevich, D. A. Syrtsova, V. V. Teplyakov, et al., Desalination 163, 267 (2004).

    Article  CAS  Google Scholar 

  43. J. A. Gonsalez-Marcos, C. Lopez-Dehesa, and J. R. Gonsalez-Velasco, J. App. Polym. Sci. 94, 1395 (2004).

    Google Scholar 

  44. V. V. Teplyakov, V. S. Khotimsky, M. Matson, et al., RU Patent No. 2248341 (2016).

  45. Yu. P. Yampol’skii and V. V. Volkov, J. Membr. Sci. 64, 191 (1991).

    Article  Google Scholar 

  46. A. T. Aguayo, A. G. Gayubo, A. Atutxa, et al., Ind. Eng. Chem. Res. 41, 4216 (2002).

    Article  CAS  Google Scholar 

  47. M. V. Tsodikov, F. A. Yandieva, V. Ya. Kugel, et al., Catal. Lett. 121, 199 (2008).

    Article  CAS  Google Scholar 

  48. R. Johansson, S. L. Hruby, J. Rass-Hansen, and C. H. Christensen, Catal. Lett. 127, 1 (2009).

    Article  CAS  Google Scholar 

  49. K. Inoue, M. Inaba, I. Takahara, and K. Murata, Catal. Lett. 136, 14 (2010).

    Article  CAS  Google Scholar 

  50. M. V. Tsodikov, A. V. Chistyakov, and A. I. Netrusov, Catalytic Valorization of Biomass into Fuel Components and Chemicals. (Lambert Academic, Saarbrucken, 2017).

    Google Scholar 

  51. S. A. Nikolaev, A. V. Chistyakov, M. V. Chudakova, et al., J. Catal. 297, 296 (2013).

    Article  CAS  Google Scholar 

  52. A. V. Chistyakov, V. Yu. Murzin, M. A. Gubanov, and M. V. Tsodikov, Chem. Eng. Trans. 32, 619 (2013).

    Google Scholar 

  53. F. A. Yandieva, M. V. Tsodikov, I. I. Moiseev, and A. E. Gekhman, Russ. Chem. Bull. 61, 1669 (2012).

    Article  CAS  Google Scholar 

  54. P. Zharova, A. Chistyakov, M. Tsodikov, et al., Chem. Eng. Transact 43, 415 (2015).

    Google Scholar 

  55. A. Chistyakov, M. Gubanov, P. Zharova, and M. Tsodikov, Chem. Eng. Trans. 37, 547 (2014).

    Google Scholar 

  56. E. G. Derouane, J. B. Nagy, P. Dejaifve, et al., J. Catal. 53, 40 (1978).

    Article  CAS  Google Scholar 

  57. C. W. Ingram and R. J. Lancashire, Catal. Lett. 31, 395 (1995).

    Article  CAS  Google Scholar 

  58. Y. Ni and Z. Sun, Appl. Microbiol. Biotechnol. 83, 415 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. E. Green, Curr. Opin. Biotechnol. 22, 337 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. J. C. Oudejans, P. F. van den Oosterkam., and H. van Bekkum, Appl. Catal., A 3, 109 (1982).

  61. J. Schulz and F. Bandermann, Chem. Eng. Technol. 17, 179 (1994).

    Article  CAS  Google Scholar 

  62. A. K. Talukdar, K. G. Bhattacharyya, and S. Sivasanker, Appl. Catal., A 148, 357 (1997).

  63. S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2442767 (2010).

  64. N. V. Kolesnichenko, Z. M. Bukina, L. E. Kitaev, et al., Pet. Chem. 56, 829 (2016).

    Google Scholar 

  65. K. Zhang, S. A. Kurumov, X. Su, et al., Pet. Chem. 57, 1036 (2017).

    Article  CAS  Google Scholar 

  66. M. Seiler, W. Wang, A. Buchholz, and M. Hunger, Catal. Lett. 88, 187 (2003).

    Article  CAS  Google Scholar 

  67. F. A. Yandieva, M. V. Tsodikov, A. V. Chistyakov, et al., Kinet. Catal. 51, 548 (2010).

    Article  CAS  Google Scholar 

  68. A. V. Chistyakov, M. V. Tsodikov, M. V. Chudakova, et al., Pet. Chem. 58, 32 (2018).

    Article  CAS  Google Scholar 

  69. V. V. Yushchenko and B. V. Romanovsky, J. Phys. Chem. 71, 2048 (1997).

    Google Scholar 

  70. A. A. Kubasov, L. E. Kitaev, V. V. Yuschenko, and Ya. V. Tikhiy, Moscow Univ. Chem. Bull. 46, 236 (2005).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 16-14-00098. The authors thank RM Nanotech for providing membrane samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Netrusov.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netrusov, A.I., Teplyakov, V.V., Tsodikov, M.V. et al. Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental Article). Pet. Chem. 59, 11–23 (2019). https://doi.org/10.1134/S0965544119010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119010110

Keywords:

Navigation