Skip to main content
Log in

Effect of the Method of Synthesizing a Nickel-Containing Catalyst on Lignin Conversion in Liquid-Phase Hydrodepolymerization

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Results of the catalytic hydrogenation of lignin in a hydrogen-donor solvent medium are described. Nickel-containing systems are deposited directly on the lignin surface in an amount of 1.5–3.4 wt %. Nickel systems are deposited by two methods: from a Ni(OAc)2 × 4Н2О aqueous solution and from a colloidal solution in toluene of nickel particles prepared by metal vapor synthesis (MVS). The hydrogen donor solvent is tetralin taken in a tetralin/lignin ratio of 1 : 1. Hydrogenation was carried out in a rotating autoclave at a temperature of 400°C and a pressure of 100 atm. It is shown that the preactivation of nickel-containing lignin by ultrasonication at 39 kHz for 20 min leads to an almost exhaustive conversion of the organic matter: the hydrogenation products comprise 13.1 wt % gas and 86.3 wt % liquid hydrocarbons. The liquid hydrogenation products contain aromatic hydrocarbons and nonvolatile condensed compounds with an average molecular weight of 300 Da. The effect of sonication on nickel-containing lignin and the evolution of nickel-containing components during lignin hydrodepolymerization are studied by electron microscopy and magnetic susceptibility methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

REFERENCES

  1. A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).

    Google Scholar 

  2. I. I. Moiseev, Theor. Exp. Chem. 46, 371 (2011).

    Article  Google Scholar 

  3. C. N. Hamelink, G. van Hooijdonk, and A. P. C. Faaij, Biomass Bioenergy 28, 384 (2005).

    Article  Google Scholar 

  4. N. Smolarski, High-Value Opportunities for Lignin: Unlocking Its Potential (Frost & Sullivan, Paris, 2012).

    Google Scholar 

  5. Y. Sun and J. Cheng, Bioresour. Technol. 83, 1 (2002).

    Article  Google Scholar 

  6. A. S. Klett, P. V. Chappell, and M. C. Thies, Chem. Commun. 51, 12855 (2015).

    Article  Google Scholar 

  7. D. M. Alonso, C. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).

    Article  Google Scholar 

  8. M. A. Rubio Rodrígez, J. De Ruick, P. Roque Díaz, et al., Appl. Energy 88, 630 (2011).

    Article  Google Scholar 

  9. C.-H. Zhou, X. Xia, C.-X. Lin, and D. Shen, Chem. Soc. Rev. 40, 5588 (2011).

    Article  Google Scholar 

  10. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Ed. by M. Crocker (Royal Society of Chemistry, Cambridge, 2010).

    Google Scholar 

  11. R. M. Ravenelle, J. R. Copeland, W.-G. Kim, et al., ACS Catal. 1, 552 (2011).

    Article  Google Scholar 

  12. R. Y. Nsimba, C. A. Mullen, N. M. West, and A. A. Boateng, ACS Sustainable Chem. Eng. 1, 260 (2013).

    Article  Google Scholar 

  13. S. Constant, M. Robitzer, F. Quignard, and F. Di Renzo, Catal. Today, 189, 123 (2012).

    Article  Google Scholar 

  14. T. Phongpreecha, N. C. Hool, R. J. Stoklosa, et al., Green Chem. 19, 5131 (2017).

    Article  Google Scholar 

  15. R. J. Stoklosa and D. B. Hodge, Bioenergy Res. 8, 1224 (2015).

    Article  Google Scholar 

  16. A. Toledano, L. Serrano, A. Garcia, et al., Chem. Eng. J. 157, 93 (2010).

    Article  Google Scholar 

  17. S. I. Mussatto, M. Fernandes, and I. C. Roberto, Carbohydr. Res., 70, 218 (2007).

    Article  Google Scholar 

  18. P. R. Patwardhan, R. C. Brown, and B. H. Shanks, ChemSusChem. 4, 1629 (2011).

    Article  Google Scholar 

  19. A. Aho, N. Kumar, K. Eränen, et al., Trans. IchemE, Part B 85, 473 (2007).

    Google Scholar 

  20. P. Ferrini and R. Rinaldi, Angew. Chem. 53, 8634 (2014).

    Article  Google Scholar 

  21. S. F. Koelewijn, A. Dewaele, T. Ennaert, et al., Green Chem. 17, 5035 (2015).

    Article  Google Scholar 

  22. S. van den Bosch, W. Schutyser, S. F. Koelewijn, et al., Chem. Commun. 51, 13158 (2015).

    Article  Google Scholar 

  23. J. Xu, J. Jiang, C. Hse, and T. F. Shupe, Green Chem. 14, 2821 (2012).

    Article  Google Scholar 

  24. J. Xie, J. Qi, C. Hse, and T. F. Shupe, J. Forest Res. 26, 261 (2015).

    Article  Google Scholar 

  25. M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, et al., Chem. Eng. J. 309, 628 (2017).

    Article  Google Scholar 

  26. M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, et al., J. Nanopart. Res. 3, 86 (2018).

    Article  Google Scholar 

  27. R. M. Ravenelle, J. R. Copeland, A. H. van Pelt, et al., Top. Catal. 55, 162 (2012).

    Article  Google Scholar 

  28. H. Ben and A. J. Ragauskas, ACS Sustainable Chem. Eng. 1, 316 (2013).

    Article  Google Scholar 

  29. M. V. Tsodikov, M. A. Perederii, and M. M. Grozhan, Khim. Tverd. Topl., No. 1, 49 (1990).

  30. M. V. Tsodikov, Yu. V. Maksimov, G. A. Teplyakova, et al., Khim. Tverd. Topl., No. 3, 92 (1992).

  31. M. V. Tsodikov, M. V. Chudakova, A. V. Chistyakov, and Yu. V. Maksimov, Pet. Chem. 53, 367 (2013).

    Article  Google Scholar 

  32. G. V. Rodicheva, V. P. Orlovskii, N. M. Romanova, et al., Russ. J. Inorg. Chem. 41, 728 (1996).

    Google Scholar 

  33. M. S. Rubina, A. A. Kamitov, Ya. V. Zubavichus, et al., Appl. Surf. Sci. 366, 365 (2016).

    Article  Google Scholar 

  34. A. Yu. Vasil’kov, D. A. Migulin, A. V. Naumkin, et al., Mendeleev Commun. 26, 187 (2016).

    Article  Google Scholar 

  35. S. A. Nikolaev, A. V. Chistyakov, M. V. Chudakova, et al., J. Catal. 297, 296 (2013).

    Article  Google Scholar 

  36. S. A. Nikolaev, N. A. Permyakov, V. V. Smirnov, et al., Kinet. Catal. 51, 288 (2010).

    Article  Google Scholar 

  37. S. Nikolaev, D. Pichugina, and D. F. Mukhamedzya-nova, Gold Bull. 45, 221 (2012).

    Article  Google Scholar 

  38. T. Phongpreecha, N. C. Hool, R. J. Stoklosa, et al., Green Chem. 19, 5131 (2017).

    Article  Google Scholar 

  39. O. V. Arapova, G. N. Bondarenko, A. V. Chistyakov, and M. V. Tsodikov, Russ. J. Phys. Chem. A 91, 1717 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.A. Nikolaev for discussing the TEM results.

This work was performed under the state task to Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences. Magnetic measurements were carried out under the state task using the equipment of the Center for collective use at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Arapova.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapova, O.V., Ellert, O.G., Borisov, R.S. et al. Effect of the Method of Synthesizing a Nickel-Containing Catalyst on Lignin Conversion in Liquid-Phase Hydrodepolymerization. Pet. Chem. 59, 111–119 (2019). https://doi.org/10.1134/S0965544119010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119010055

Keywords:

Navigation