Skip to main content
Log in

Membrane Materials with Semi-Interpenetrating Networks Based on Poly(4-methyl-2-pentyne) and Polyethyleneimine

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Disubstituted polyacetylene poly(4-methyl-2-pentyne) (PMP) exhibits one of the highest levels of gas/vapor permeability and selectivity of C3+ recovery from mixtures with permanent gases among known polymers. In this study, semi-interpenetrating networks based on compatible mixtures of PMP and thermally crosslinked polyethyleneimine (PEI) have been obtained to enhance the resistance of PMP to organic solvents. Investigation of the phase equilibrium of PMP and PEI mixtures by optical interferometry has revealed that PMP dissolves up to 30 vol % PEI at room temperature. The fact of thermal crosslinking of PEI is confirmed by IR data. The influence of the proportion of crosslinked PEI on the gas permeability, solubility, and swelling in organic solvents of the films prepared from PMP mixtures with PEI has been examined. Having the PEI content higher than 20 vol %, the films are resistant to organic solvents for at least 14 days. Moreover, with an increase in the proportion of PEI, the degree of swelling of the films is substantially reduced. The increase in stability can be explained by the retention of PMP macromolecules in the crosslinked PEI matrix, which probably reduces the swelling of the films and impedes the extraction of linear PMP macromolecules from the polymer network. The ideal O2/N2, CO2/N2, and CO2/CH4 selectivities increase with a growth in the PEI proportion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. Nagai, T. Masuda, T. Nakagawa, et al., Prog. Polym. Sci. 26, 721 (2001).

    Article  CAS  Google Scholar 

  2. R. Srinivasan, S. R. Auvil, and P. M. Burban, J. Membr. Sci. 86, 67 (1994).

    Article  CAS  Google Scholar 

  3. T. C. Merckel, R. P. Gupta, B. S. Turk, and B. D. Freeman, J. Membr. Sci. 191, 85 (2001).

    Article  Google Scholar 

  4. A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).

    Article  CAS  Google Scholar 

  5. T. C. Merkel, B. D. Freeman, R. J. Spontak, et al., Chem. Mater. 15, 109 (2003).

    Article  CAS  Google Scholar 

  6. T. C. Merkel, B. D. Freeman, R. J. Spontak, et al., Science 296 (5567), 519 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. W. Yave, S. Shishatskiy, V. Abetz, et al., Macromol. Chem. Phys. 208, 2412 (2007).

    Article  CAS  Google Scholar 

  8. V. S. Khotimsky, S. M. Matson, E. G. Litvinova, et al., Polym. Sci., Ser. A. 45, 740 (2003).

    Google Scholar 

  9. A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).

    Article  CAS  Google Scholar 

  10. R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).

    Article  CAS  Google Scholar 

  11. S. L. Doo, S. J. Dae, H. K. Tae, and C. K. Sung, J. Membr. Sci. 60, 233 (1991).

    Article  Google Scholar 

  12. D. S. Lee, W. K. Kang, J. H. An, and S. C. Kim, J. Membr. Sci. 75, 15 (1992).

    Article  CAS  Google Scholar 

  13. B.-Y. Lim and S.-C. Kim, J. Membr. Sci. 209, 293 (2002).

    Article  CAS  Google Scholar 

  14. J. Aleman, A. V. Chadwick, J. He, et al., Pure Appl. Chem. 79, 1801 (2007).

    Article  CAS  Google Scholar 

  15. L. Chikh, V. Delhorbe, and O. Fichet, J. Membr. Sci. 368, 1 (2011).

    Article  CAS  Google Scholar 

  16. S. Saimani and A. Kumar, J. Appl. Polym. Sci. 110, 3606 (2008).

    Article  CAS  Google Scholar 

  17. J. R. Nair, M. Destro, F. Bella, and G. B. Appetecchi, J. Power Sources 306, 258 (2016).

    Article  CAS  Google Scholar 

  18. J. Kurdi and A. Kumar, J. Membr. Sci. 280, 234 (2006).

    Article  CAS  Google Scholar 

  19. S. Saimani, M. M. Dal-Cin, A. Kumar, and D. M. Kingston, J. Membr. Sci. 362, 353 (2010).

    Article  CAS  Google Scholar 

  20. C. Zhang, W. Zhang, H. Gao, et al., J. Membr. Sci. 528, 72 (2017).

    Article  CAS  Google Scholar 

  21. J. Kurdi and A. Kumar, Sep. Purif. Technol. 53, 301 (2007).

    Article  CAS  Google Scholar 

  22. J. Kurdi and A. Kumar, J. Membr. Sci. 280, 234 (2006).

    Article  CAS  Google Scholar 

  23. M.-S. Kang, J. H. Kim, J. Won, et al., J. Membr. Sci. 247, 127 (2005).

    Article  CAS  Google Scholar 

  24. X. Wu, G. He, S. Gu, et al., J. Membr. Sci. 295, 80 (2007).

    Article  CAS  Google Scholar 

  25. J. Reale, Jr., US Patent No. 5032278 (1991).

  26. A. A. Surovtsev, N. V. Petrushanskaya, O. P. Karpov, et al., RU Patent No. 2228323 (2004).

  27. A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers: Measurement Techniques (Khimiya, Moscow, 1979) [in Russian].

  28. V. Makarova and V. Kulichikhin, Interferometry: Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2012), ch. 20.

    Google Scholar 

  29. M. M. Feldstein, T. I. Kiseleva, G. N. Bondarenko, et al., J. Appl. Polym. Sci. 112, 1142 (2009).

    Article  CAS  Google Scholar 

  30. B. V. Ioffe, Refractometric Techniques in Chemistry (Khimiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  31. Q. Lu, J. Yang, W. Lu, J. Wang, Y. Nuli, Electrochim. Acta 152, 489 (2015).

    Article  CAS  Google Scholar 

  32. F. Tran-Van, L. Beouch, F. Vidal, et al., Electrochim. Acta 53, 4336 (2008).

    Article  CAS  Google Scholar 

  33. E. Cznotka, S. Jeschke, P. Vettikuzha, and H.-D. Wiemhöfer, Solid States Ionics 274, 55 (2015).

    Article  CAS  Google Scholar 

  34. D. He, D. W. Kim, J. S. Park, et al., J. Power Sources 244, 170 (2013).

    Article  CAS  Google Scholar 

  35. S. Kalapala and A. J. Easteal, J. Power Sources 147, 256 (2005).

    Article  CAS  Google Scholar 

  36. H.-J. Ha, E.-H. Kil, Y. H. Kwon, et al., Energy Environ. Sci. 5, 6491 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.N. Bondarenko for assistance in measuring IR spectra.

The work was supported by the Federal Agency of Science Institutions of Russia within the framework of the State task to the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Matson.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matson, S.M., Litvinova, E.G. & Khotimskiy, V.S. Membrane Materials with Semi-Interpenetrating Networks Based on Poly(4-methyl-2-pentyne) and Polyethyleneimine. Pet. Chem. 58, 934–940 (2018). https://doi.org/10.1134/S0965544118110063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118110063

Keywords:

Navigation