Skip to main content
Log in

Ionic Conductivity of Ceria-Doped Ion Exchange Membranes on the Basis of Sulfonated Polynaphthaleneimide

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Hybrid membrane materials on the basis of sulfonated polynaphthaleneimide doped with ceria have been synthesized, and their ionic conductivity has been investigated. The conditions for membrane synthesis with different dopant contents have been determined. Ceria doping leads to a decrease in the ionexchange capacity of membranes and an increase in their ion conductivity upon contact with water. After 7% ceria doping, the ionic conductivity of the initial membrane (1.9 × 10−2 Ω−1 cm−1) increases up to 3.0 × 10−2 Ω−1 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Pourcelly, Pet. Chem. 51, 480 (2011).

    Article  CAS  Google Scholar 

  2. E. Yu. Safronova and A. B. Yaroslavtsev, Pet. Chem. 56, 281 (2016).

    Article  CAS  Google Scholar 

  3. P. Nema, R. K. Nema, and S. Rangnekar, Renew. Sustain. Energy. Rev. 13, 2096 (2009).

    Article  CAS  Google Scholar 

  4. I. A. Stenina, E. Yu. Safronova, A. V. Levchenko, et al., Therm. Eng. 63, 385 (2016).

    Article  CAS  Google Scholar 

  5. N. L. Basov, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, Russ. Chem. Rev. 82, 35285 (2013).

    Article  Google Scholar 

  6. V. V. Teplyakov, M. G. Shalygin, A. V. Chistyakov, et al., Pet. Chem. 57, 747 (2017).

    Article  CAS  Google Scholar 

  7. G. J. Grashoff, C. E. Pilkington, and W. C. Corti, Platinum Met. Rev. 27, 157 (1983).

    CAS  Google Scholar 

  8. V. M. Ievlev, A. A. Maksimenko, A.I. Sitnikov, et al., Inorg. Mater. Appl. Res. 7, 586 (2016).

    Article  Google Scholar 

  9. O. Hatlevik, S. K. Gade, M. K. Keeling, et al. Sep. Purif. Technol. 73, 59 (2010).

    Article  CAS  Google Scholar 

  10. Handbook of Fuel Cells: Fundamentals, Technology, Applications, vol. 3: Fuel Cell Technology and Applications, Ed. by W. Vielstich, A. Lamm, and H. A. Gasteiger (Wiley, Chichester, 2003).

    Google Scholar 

  11. A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).

    Article  CAS  Google Scholar 

  12. J. Mader, L. Xiao, T. J. Schmidt, and B. C. Benicewicz, Adv. Polym. Sci. 216, 63 (2008).

    CAS  Google Scholar 

  13. Y. F. Zhai, H. M. Zhang, G. Liu, et al., J. Electrochem. Soc. 154, B72 (2007).

    Article  CAS  Google Scholar 

  14. S. Ghosh, S. Maity, and T. Jana, J. Mater. Chem. 21, 14897 (2011).

    Article  CAS  Google Scholar 

  15. M. Linlin, A. K. Mishra, N. H. Kim, and J. H. Lee, J. Membr. Sci. 411, 91 (2012).

    Article  Google Scholar 

  16. A. K. Mishra, N. H. Kim, and J. H. Lee, J. Membr. Sci. 449, 136 (2014).

    Article  CAS  Google Scholar 

  17. X. Wu, M. Mamlouk, and K. Scott, Fuel Cells 11, 620 (2011).

    Article  Google Scholar 

  18. A. A. Lysova, I. I. Ponomarev, and A. B. Yaroslavtsev, Solid State Ionics 188, 132 (2011).

    Article  CAS  Google Scholar 

  19. F. J. Pinar, P. Cañizares, M. A. Rodrigo, et al., RSC Adv. 2, 1547 (2012).

    Article  CAS  Google Scholar 

  20. F. J. Pinar, P. Cañizares, M. A. Rodrigo, et al., J. Power Sources 274, 177 (2015).

    Article  CAS  Google Scholar 

  21. K. Miyatake, H. Zhou, H. Uchida, and M. Watanabe, Chem. Commun., No. 3, 368 (2003).

    Article  Google Scholar 

  22. A. Kraytsberg and Y. Ein-Eli, Energy Fuels 28, 7303 (2014).

    Article  CAS  Google Scholar 

  23. A. Kabasawa, J. Saito, H. Yano, et al., Electrochim. Acta 54, 1076 (2009).

    Article  CAS  Google Scholar 

  24. C. Genies, R Mercier., B. Sillion, et al., Polymer 42, 5097 (2001).

    Article  CAS  Google Scholar 

  25. N. Li, F. Zhang, J. Wang, et al., Polymer 50, 3600 (2009).

    Article  CAS  Google Scholar 

  26. W. Qian, Yu. Shang, M. Fang, et al., Int. J. Hydrogen Energy 37, 12919 (2012).

    Article  CAS  Google Scholar 

  27. S. A. Makulova, Yu. A. Karavanova, I. I. Ponomarev, et al., Pet. Chem. 57, 127 (2017).

    Article  CAS  Google Scholar 

  28. A. B. Yaroslavtsev, Yu. A. Karavanova, and E. Yu. Safronova, Pet. Chem. 51, 473 (2011).

    Article  CAS  Google Scholar 

  29. V. I. Roldugin and L. V. Karpenko-Jereb, L.V. Colloid J. 78, 796 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © S.A. Makulova, Yu.A. Karavanova, I.I. Ponomarev, I.A. Stenina, Yu.A. Volkova, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 2, pp. 102–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makulova, S.A., Karavanova, Y.A., Ponomarev, I.I. et al. Ionic Conductivity of Ceria-Doped Ion Exchange Membranes on the Basis of Sulfonated Polynaphthaleneimide. Pet. Chem. 58, 304–308 (2018). https://doi.org/10.1134/S0965544118040060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118040060

Keywords

Navigation