Skip to main content
Log in

Study of Separation Behavior of Activated and Non-Activated MOF-5 as Filler on MOF-based Mixed-Matrix Membranes in H2/CO2 Separation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In this study, cubic and tetragonal structures of MOF-5 (C-MOF-5 and T-MOF-5) were successfully synthesized, characterized and incorporated into cellulose acetate (CA) polymer matrix in the range of 6, 9 and 12 wt % to fabricate mixed matrix membranes (MMMs). The effects of smaller pore size of T-MOF-5 and more ZnO molecules in T-MOF-5, on the H2 and CO2 permeation properties of C-MOF-5/CA and T-MOF-5/CA MMMs were investigated. The all novel MMMs were prepared using the solution casting method and characterized by FTIR, TGA and SEM. SEM images as well as results of FTIR and TGA analyses confirmed good adhesion between both MOF-5s and CA matrix. Addition of both C-MOF-5 and T-MOF-5 into the CA improved the gas transport properties of the CA, especially in H2 separation. The H2/CO2 selectivity continued the increasing trend at 9 wt % and did not significantly reduce even at 12 wt % due to good adhesion between both MOF-5s and CA. The highest H2/CO2 selectivity was obtained at 12 and 9 wt % loading of C-MOF-5 and T-MOF-5, respectively. By changing the filler from C-MOF-5 to T-MOF-5, the increasing and reducing of adsorption site of H2 and CO2 (respectively), and also reducing in pore size, caused the appearance of H2 permeability to not change much but the CO2 permeability to reduce. Accordingly, the H2/CO2 selectivity in all T-MOF-5/CA MMMs is higher than that in all C-MOF-5/CA MMMs. According to obtained results, the activated MOFs (i.e., C-MOF-5 in this study) are not always the best choices for separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Huang, Y. Chen, Q. Liu, N. Wang, J. Jiang, and J. Caro, J. Memb. Sci. 454, 126 (2014).

    Article  CAS  Google Scholar 

  2. R. S. Haszeldine, Science 325, 1647 (2009).

    Article  CAS  Google Scholar 

  3. R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).

    Article  CAS  Google Scholar 

  4. N. Z. Muradov and T. N. Veziroglu, Int. J. Hydrogen Energy 33, 6804 (2008).

    Article  CAS  Google Scholar 

  5. J. W. Dijkstra, J. A. Z. Pieterse, H. Li, J. Boon, Y. C. Delft, and G. Raju, Energy Procedia 4, 715 (2011).

    Article  CAS  Google Scholar 

  6. M. D. Dolan, S. S. Hla, and L. D. Morpeth, Sep. Purif. Technol. 147, 398 (2015).

    Article  CAS  Google Scholar 

  7. R. Koc, N. K. Kazantzis, and M. Y. Hua, Int. J. Hydrogen Energy 36, 4934 (2011).

    Article  CAS  Google Scholar 

  8. T. A. Peters, M. Stange, H. Klette, and R. Bredesen, J. Membr. Sci. 316, 119 (2008).

    Article  CAS  Google Scholar 

  9. E. Fernandez, K. Coenen, A. Helmi, J. Melendez, J. Zuñiga, and D. A. Pacheco Tanaka, Int. J. Hydrogen Energy 40, 13463 (2015).

    Article  CAS  Google Scholar 

  10. H. B. Wang and Y. S. Lin, J. Membr. Sci. 396, 128 (2012).

    Article  CAS  Google Scholar 

  11. S. Smart, J. Vente, J. and C. Diniz da Costa, Int. J. Hydrogen Energy 37, 12700 (2012).

    Article  CAS  Google Scholar 

  12. A. Criscuoli, A. Basile, and E. Drioli, Catal. Today 56, 53 (2000).

    Article  CAS  Google Scholar 

  13. C. A. Scholes, K. H. Smith, S. E. Kentish, and G. W. Stevens, Int. J. Greenhouse Gas Control 4, 739 (2010).

    Article  CAS  Google Scholar 

  14. D. R. Pesiri, B. Jorgensen, and R. C. Dye, J. Membr. Sci. 218, 11 (2003).

    Article  CAS  Google Scholar 

  15. E. V. Perez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, J. Membr. Sci. 328, 165 (2009).

    Article  CAS  Google Scholar 

  16. H. B. Tanh Jeazet, C. Staudt, and Ch. Janiak, Dalton Trans. 41, 14003 (2012).

    Article  CAS  Google Scholar 

  17. W. J. Koros and R. Mahajan, J. Membr. Sci. 175, 181 (2000).

    Article  CAS  Google Scholar 

  18. W. J. Koros and R. Mahajan, Polym. Eng. Sci. 42, 1420 (2002a).

    Article  Google Scholar 

  19. W. J. Koros and R. Mahajan, Polym. Eng. Sci. 42, 1432 (2002b).

    Article  Google Scholar 

  20. J.-M. Duval, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, J. Membr. Sci. 80, 189 (1993).

    Article  CAS  Google Scholar 

  21. R. Mahajan and W. J. Koros, Ind. Eng. Chem. Res. 39, 2692 (2000).

    Article  CAS  Google Scholar 

  22. M. G. Suer, N. Bac, and L. Yilmaz, J. Membr. Sci. 91, 77 (1994).

    Article  Google Scholar 

  23. M. Pakizeh and S. Hokmabadi, J. Appl. Polym. Sci. 134, 443291 (2016).

    Google Scholar 

  24. A. Ehsani and M. Pakizeh, J. Taiwan Inst. Chem. Eng. 66, 414 (2016).

    Article  CAS  Google Scholar 

  25. M. Arjmandi and M. Pakizeh, J. Ind. Eng. Chem. 20, 3857 (2014).

    Article  CAS  Google Scholar 

  26. M. Arjmandi, M. Pakizeh, and O. Pirouzram, Korean J. Chem. Eng. 32, 1178 (2015).

    Article  CAS  Google Scholar 

  27. H. Amedi and M. Aghajani, J. Nat. Gas Sci. Eng. 35, 695 (2016).

    Article  CAS  Google Scholar 

  28. E. Ahmadpour, M. V. Sarfaraz, R. Mosayyebi Behbahani, A. Arabi Shamsabadi, and M. Aghajani, J. Nat. Gas Sci. Eng. 35, 33 (2016).

    Article  CAS  Google Scholar 

  29. A. Jomekiana, R. Mosayebi Behbahani, T. Mohammadi, and A. Kargari, J. Nat. Gas Sci. Eng. 31, 562 (2016).

    Article  Google Scholar 

  30. F. Dorosti, M. Omidkhah, and R. Abedini, J. Nat. Gas Sci. Eng. 25, 88 (2015).

    Article  CAS  Google Scholar 

  31. M. Farrokhnia, A. Safekordi, M. Rashidzadeh, G. Khanbabaei, R. Akbari Anari, and M. Rahimpour, J. Porous Mater. 23, 1279 (2016).

    Article  CAS  Google Scholar 

  32. O. Ghaffari Nik, X. Y. Chen, and S. Kaliaguine, J. Membr. Sci. 413–414, 48 (2012).

    Google Scholar 

  33. H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, Nature 402, 276 (1999).

    Article  CAS  Google Scholar 

  34. M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, and J. R. Long, J. Am. Chem. Soc. 128, 16876 (2006).

    Article  CAS  Google Scholar 

  35. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Science 300, 1127 (2003).

    Article  CAS  Google Scholar 

  36. M. Müller, S. Hermes, K. Kähler, M. W. E. van den Berg, M. Muhler, and R. A. Fischer, Chem. Mater. 20, 4576 (2008).

    Article  Google Scholar 

  37. F. Salles, H. Jobic, G. Maurin, M. M. Koza, P. L. Llewwellyn, T. Devic, C. Serre, and G. Ferey, Phys. Rev. Lett. 100, 245901 (2008).

    Article  CAS  Google Scholar 

  38. L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, and Y. Yan, Microporous Mesoporous Mater. 58, 105 (2003).

    Article  CAS  Google Scholar 

  39. R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed. 47, 4966 (2008).

    Article  CAS  Google Scholar 

  40. J. Y. Lee, L. Pan, S. R. Kelly, J. Jagiello, T. J. Emge, and J. Li, Adv. Mater. 17, 2703 (2005).

    Article  CAS  Google Scholar 

  41. M. Hirscher and B. Panella, Scr. Mater. 56, 809 (2007).

    Article  CAS  Google Scholar 

  42. J. S. Choi, W. J. Son, J. Kim, and W. S. Ahn, Microporous Mesoporous Mater. 116, 727 (2008).

    Article  CAS  Google Scholar 

  43. M. Arjmandi and M. Pakizeh, Braz. J. Chem. Eng. 33, 225 (2015).

    Article  Google Scholar 

  44. A. I. Skoulidas and D. S. Sholl, J. Phys. Chem. B 109, 15760 (2005).

    Article  CAS  Google Scholar 

  45. E. C. Spencer, J. A. K. Howard, G. J. McIntyre, J. L. C. Rowsell, and O. M. Yaghi, Chem. Commun. (Cambridge, U. K.) 21, 278 (2006).

    Article  Google Scholar 

  46. L. Zhang and Y. H. Hu, Mater. Sci. Eng., B 176, 573 (2011).

    Article  CAS  Google Scholar 

  47. R. A. Sarmiento-Perez, L. M. Rodriguez-Albelo, A. Gomez, M. Autie-Perez, D. W. Lewis, and A. R. Ruiz-Salvador, Micoporous Mesoporous Mater. 163, 186 (2012).

    Article  CAS  Google Scholar 

  48. M. Arjmandi and M. Pakizeh, Acta Metall. Sin. (Engl. Lett.) 26, 597 (2013).

    Article  CAS  Google Scholar 

  49. S. S. Kaye, A. Dailly, O. M. Yaghi, and J. R. Long, J. Am. Chem. Soc. 129, 14176 (2007).

    Article  CAS  Google Scholar 

  50. G. Clarizia, C. Algieri, A. Regina, and E. Drioli, Microporous Mesoporous Mater. 115, 67 (2008).

    Article  CAS  Google Scholar 

  51. Y. Yang, in Polymer Data Handbook, Ed. by J. E. Mark (Oxford Univ. Press, New York, 1999).

  52. N. Benosmane, B. Guedioura, S. M. Hamdi, M. Hamdi, and B. Boutemeur, Mater. Sci. Eng., C 30, 860 (2010).

    Article  CAS  Google Scholar 

  53. S. Hermes, F. Schroder, S. Amirjalayer, R. Schmid, and R. A. Fischer, J. Mater. Chem. 16, 2464 (2006).

    Article  CAS  Google Scholar 

  54. R. Sabouni, H. Kazemian, and S. Rohani, Chem. Eng. J. 165, 966 (2010).

    Article  CAS  Google Scholar 

  55. N. T. S. Phan, K. K. A. Le, and T. D. Phan, Appl. Catal., A 382, 246 (2010).

    Article  CAS  Google Scholar 

  56. J. Coates, (Wiley, New York, 2000).

  57. V. Abetz, T. Brinkmann, M. Dijkstra, K. Ebert, D. Fritsch, K. Ohlrogge, D. Paul, K.-V. Peinemann, S. P. Nunes, N. Scharnagk, and M. Schossig, Adv. Eng. Mater. 8, 328 (2006).

    Article  CAS  Google Scholar 

  58. R. W. Baker, Membrane Technology and Application, 2nd ed. (Wiley, California, 2004).

    Book  Google Scholar 

  59. E. Karatay, H. Kalıpcılar, and L. Yılmaz, J. Membr. Sci. 364, 75 (2010).

    Article  CAS  Google Scholar 

  60. J. Ahmad and M. B. Hagg, Sep. Purif. Technol. 115, 190 (2013).

    Article  CAS  Google Scholar 

  61. B. Zornoza, O. Esekhile, W. J. Koros, C. Tellez, and J. Coronas, Sep. Purif. Technol. 77, 137 (2011).

    Article  CAS  Google Scholar 

  62. B. Seoane, C. Tellez, J. Coronas, and C. Staudt, Sep. Purif. Technol. 111, 72 (2013).

    Article  CAS  Google Scholar 

  63. S. N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C.N. Nguyen, S. Goel, and K. J. Balkus, Ind. Eng. Chem. Res. 52, 6991 (2013).

    Article  CAS  Google Scholar 

  64. G. L. Zhuang, H. H. Tseng, and M. Y. Wey, Int. J. Hydrogen Energy 39, 17178 (2014).

    Article  CAS  Google Scholar 

  65. J. O. Hsieh, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, Microporous Mesoporous Mater. 196, 165 (2014).

    Article  CAS  Google Scholar 

  66. E. V. Perez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, J. Membr. Sci. 328, 165 (2009).

    Article  CAS  Google Scholar 

  67. H. Ren, J. Jin, J. Hu, and H. Liu, Ind. Eng. Chem. Res. 51, 10156 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pakizeh.

Additional information

Published in Russian in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 2, pp. 116–128.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmandi, M., Pakizeh, M., Saghi, M. et al. Study of Separation Behavior of Activated and Non-Activated MOF-5 as Filler on MOF-based Mixed-Matrix Membranes in H2/CO2 Separation. Pet. Chem. 58, 317–329 (2018). https://doi.org/10.1134/S0965544118040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118040023

Keywords

Navigation