Petroleum Chemistry

, Volume 58, Issue 3, pp 237–244 | Cite as

Influence of Steaming of Gallium-Containing Zeolite on Its Acid and Catalytic Properties in the Propane Aromatization Process

  • L. N. Vosmerikova
  • I. G. Danilova
  • A. A. Vosmerikov
  • Ya. E. Barbashin
  • A. V. Vosmerikov


Propane conversion to aromatic hydrocarbons (HC) on a steamed galloaluminosilicate catalyst has been studied. Dependences of the propane conversion, the selectivity of the formation of its conversion products, and the on-stream stability of galloaluminosilicate on the steaming temperature have been revealed. It has been found that steaming leads to a decrease in concentration of acid sites of different strengths, a change that has been associated with partial dealumination of the zeolite framework. Trends in the coking process on the steamed galloaluminosilicate surface in the propane conversion to aromatic hydrocarbons have been elucidated, and the origin and concentration of the condensation products formed have been determined.


propane aromatic hydrocarbons zeolite acidity conversion activity selectivity coke carbonaceous deposits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Lapidus and A. A. Dergachev, Gazokhimiya, 16 (2008).Google Scholar
  2. 2.
    G. V. Echevskii, Oil Gas J., No. 3, 83 (2012).Google Scholar
  3. 3.
    L. N. Vosmerikova, A. N. Volynkina, A. V. Vosmerikov, and V. I. Zaikovskii, Neftegazokhimiya, No. 1, 37 (2015).Google Scholar
  4. 4.
    M. Tian, T. Q. Zhao, P. L. Chin, et al., Chem. Phys. Lett. 592, 36 (2014).CrossRefGoogle Scholar
  5. 5.
    K. V. Topchieva and Tkhoang Ho Shi, Activity and Physicochemical Ptoperties of High-Silica Zeolites and Zeolite-Containing Catalysts (Izd. Moskovskogo Univ., Moscow, 1976) [in Russian].Google Scholar
  6. 6.
    W. Lutza, H. Toufara, and D. Heidemannb, Microporous Mesoporous Mater. 104, 171 (2007).CrossRefGoogle Scholar
  7. 7.
    E. A. Paukshtis and E. N. Yurchenko, Russ. Chem. Rev. 52, 242 (1983).CrossRefGoogle Scholar
  8. 8.
    R. I. Soltanov, E. A. Paukshtis, and E. N. Yurchenko, Kinet. Katal. 23, 164 (1982).Google Scholar
  9. 9.
    A. V. Toktarev, L. V. Malysheva, and E. A. Paukshtis, Kinet. Catal. 51, 318 (2010).CrossRefGoogle Scholar
  10. 10.
    C. O. Arean, G. T. Palomino, F. Geobaldo, and A. Zecchina, J. Phys. Chem. 100, 6678 (1996).CrossRefGoogle Scholar
  11. 11.
    C. O. Arean, B. Bonelli, G. T. Palomino, et al., Phys. Chem. Chem. Phys. 3, 1223 (2001).CrossRefGoogle Scholar
  12. 12.
    K. Hadjiivanov, Adv. Catal. 57, 99 (2014).Google Scholar
  13. 13.
    A. A. Gabrienko, I. G. Danilova, S. S. Arzumanov, et al., Microporous Mesoporous Mater. 131, 210 (2010).CrossRefGoogle Scholar
  14. 14.
    Paukshtis, E.A., Infrared Spectroscopy in Heterogeneous Acid–Base Catalysis (Nauka, Novosibirsk, 1992) [in Russian].Google Scholar
  15. 15.
    T. V. Choudhary, A. Kinage, S. Banerjee, and V. R. Choudhary, Energy Fuels 20, 919 (2006).CrossRefGoogle Scholar
  16. 16.
    V. G. Stepanov, V. M. Mastikhin, and K. G. Ione, Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 619 (1982).Google Scholar
  17. 17.
    V. G. Stepanov, G. V. Echevskii, A. A. Shubin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 5, 1002 (1986).Google Scholar
  18. 18.
    I. G. Danilova, E. A. Paukshtis, A. V. Kalinkin, et al., Kinet. Catal. 43, 698 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. N. Vosmerikova
    • 1
  • I. G. Danilova
    • 2
  • A. A. Vosmerikov
    • 1
  • Ya. E. Barbashin
    • 1
  • A. V. Vosmerikov
    • 1
  1. 1.Institute of Petroleum ChemistrySiberian Branch of Russian Academy of SciencesTomskRussia
  2. 2.Boreskov Institute of CatalysisSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations