Petroleum Chemistry

, Volume 58, Issue 3, pp 225–236 | Cite as

Influence of Feedstock Group Composition on the Octane Number and Composition of the Gasoline Fraction of Catalytically Cracked Vacuum Distillate

  • E. D. Ivanchina
  • E. N. Ivashkina
  • G. Yu. Nazarova
  • G. Zh. Seitenova


Thermodynamic parameters for the reactions of vacuum distillate catalytic cracking in a riser reactor have been calculated using the density functional theory. The list of the reactions has been compiled on the basis of laboratory studies on determining the group and structural-group composition of the vacuum distillate and the results of thermodynamic analysis. A kinetic model of the catalytic cracking process has been developed on the basis of a formalized scheme of the hydrocarbon conversion mechanism. By using the kinetic model derived, the effect of the group composition of four vacuum distillate samples on the octane number and the composition of the gasoline fraction of the catalytic cracking process has been assessed.


deep oil processing catalytic cracking coke light fractions resource-saving efficiency gasoline diesel fuel olefins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Froment, Curr. Opin. Chem. Eng. 5, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    I. M. Gerzeliev, K. I. Dement’ev, and S. N. Khadzhiev, Pet. Chem. 55, 481 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Gao, C. Xu, S. Lin, et al., AIChE J. 45, 1095 (1999).CrossRefGoogle Scholar
  4. 4.
    P. Varshney, D. Kunzru, and S. K. Gupta, Indian Chem. Eng. 21, 1 (2014).Google Scholar
  5. 5.
    S. Chen, Y. Fan, Z. Yan, et al., Chem. Eng. Sci. 153, 58 (2016).CrossRefGoogle Scholar
  6. 6.
    A. A. Lappas, D. K. Iatridis, M. C. Papapetrou, et al., Chem. Eng. J. 278, 140 (2015).CrossRefGoogle Scholar
  7. 7.
    K. Xiong, C. Lu, Z. Wang, and X. Gao, Fuel 142, 65 (2015).CrossRefGoogle Scholar
  8. 8.
    M. G. Slin’ko, Katal. Prom-st., No. 5, 5 (2008).Google Scholar
  9. 9.
    V. P. Doronin, P. V. Lipin, and T. P. Sorokina, Catal. Ind. 4, 100 (2012).CrossRefGoogle Scholar
  10. 10.
    A. N. Zagoruiko, A. S. Belyi, M. D. Smolikov, and A. S. Noskov, Catal.Today 220–222, 168 (2014).CrossRefGoogle Scholar
  11. 11.
    S. A. Faleev, N. S. Belinskaya, E. D. Ivanchina, et al., Neftepererab. Neftekhim., No. 10, 14 (2013).Google Scholar
  12. 12.
    A. V. Kravtsov, E. D. Ivanchina, E. N. Ivashkina, et al., Pet. Chem. 53, 267 (2013).CrossRefGoogle Scholar
  13. 13.
    E. D. Ivanchina, E. N. Ivashkina, I. O. Dolganova, and V. V. Platonov, Pet. Chem. 54, 445 (2014).CrossRefGoogle Scholar
  14. 14.
    V. W. Weekman, Jr. and D. M. Nace, Ind. Eng. Chem. Process Des. Dev. 7, 90 (1968).CrossRefGoogle Scholar
  15. 15.
    J. Wei, Adv. Catal. 13, 203 (1962).Google Scholar
  16. 16.
    J. Zhang, Z. Wang, H. Jiang, et al., Chem. Eng. Sci. 102, 87 (2013).CrossRefGoogle Scholar
  17. 17.
    E. Baudrez, G. J. Heynderickx, and G. B. Marin, Chem. Eng. Res. Des. 88, 290 (2010).CrossRefGoogle Scholar
  18. 18.
    K. K. Dagde and Y. T. Puyate, Int. J. Eng. Res. Appl. 2, 557 (2012).Google Scholar
  19. 19.
    K. Xiong, Ch. Lu, Zh. Wang, and X. Gao, Fuel 142, 65 (2015).CrossRefGoogle Scholar
  20. 20.
    X. Dupain, E. D. Gamas, R. Madon, et al., Fuel 82, 1559 (2003).CrossRefGoogle Scholar
  21. 21.
    J. Corella and E. Francés, Fluid Catalytic Cracking II: Concepts in Catalyst Design, vol. 452 of ACS Symposium Series, Ed. by M. L. Occelli (American Chemical Society, Washington, 1991), p.165.Google Scholar
  22. 22.
    A. A. Ebrahimi, S. Tarighi, and A. B. Ani, Kinet. Catal. 57, 610 (2016).CrossRefGoogle Scholar
  23. 23.
    Q. Fusheng, W. Yongqian and L. Qiao, Pet. Sci. Technol. 34, 335 (2016).CrossRefGoogle Scholar
  24. 24.
    A. K. Das, E. Baudrez, G. B. Marin, and G. J. Heynderickx, Ind. Eng. Chem. Res. 42, 2602 (2003).CrossRefGoogle Scholar
  25. 25.
    X. Kang, X. Guo, and H. You, Energy Sources, Part A 35, 1921 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Radu and D. Ciuparu, Revista Chim. 1, 113 (2014).Google Scholar
  27. 27.
    X. Lan, C. Xu, G. Wang, et al., Chem. Eng. Sci. 64, 3847 (2009).CrossRefGoogle Scholar
  28. 28.
    S. M. Jacob, B. Gross, S. E. Voltz, and V. W. Weekman, Jr., AIChE J. 22, 701 (1976).CrossRefGoogle Scholar
  29. 29.
    P. G. Coxon and K. B. Bischoff, Ind. Eng. Chem. Res. 26, 1239 (1987).CrossRefGoogle Scholar
  30. 30.
    K. N. Theologos and N. C. Markatos, AIChE J. 39, 1007 (1993).CrossRefGoogle Scholar
  31. 31.
    I. Pitault, D. Nevicato, M. Forissier, and J. Bernard, Chem. Eng. Sci. 49, 4249 (1994).CrossRefGoogle Scholar
  32. 32.
    C. Derouin, D. Nevicato, M. Forissier, et al., Ind. Eng. Chem. Res. 36, 4504 (1997).CrossRefGoogle Scholar
  33. 33.
    Y. Sa, X. Liang, X. Chen, and J. Liu, Petrochem. Eng. Cor, 145 (1995).Google Scholar
  34. 34.
    T. A. Berry, T. R. McKeen, T. S. Pugsley, and A. K. Dalai, Ind. Eng. Chem. Res. 43, 5571 (2004).CrossRefGoogle Scholar
  35. 35.
    J. Carella, Ind. Eng. Chem. Res. 43, 4080 (2004).CrossRefGoogle Scholar
  36. 36.
    L. Oliveira and E. C. Biscaia, Ind. Eng. Chem. Res. 28, 264 (1989).CrossRefGoogle Scholar
  37. 37.
    J. Ancheyta and R. Sotelo, Revista Soc. Quim. Mexico 46, 38 (2002).Google Scholar
  38. 38.
    A. V. Glazov, O. I. Dmitrichenko, N. V. Korotkova, et al., Neftepererab. Neftekhim., No. 9, 8 (2012).Google Scholar
  39. 39.
    V. I. Gordenko, V. P. Doronin, N. V. Korotkova, P. V. Lipin, O. V. Potapenko, T. P. Sorokina, Katal. Prom-st., No. 5, 9 (2014).Google Scholar
  40. 40.
    V. M. Potekhin and V. V. Potekhin, Fundamentals of the Theory of Chemical Processes in Technology of Organic Compounds and Petroleum Refining: A Textbook, 3rd Ed. (Lan’, St. Petersburg, 2014) [in Russian].Google Scholar
  41. 41.
    R. N. Magomedov, A. Z. Popova, T. A. Maryutina, et al., Pet. Chem. 55, 423 (2015).CrossRefGoogle Scholar
  42. 42.
    P. V. Lipin, V. P. Doronin, and T. I. Gulyaeva, Pet. Chem. 50, 362 (2010).CrossRefGoogle Scholar
  43. 43.
    N. N. Abryutina, V. V. Abushaeva, O. A. Aref’ev, et al., Guidance Manual of Advanced Petroleum Analysis Methods, Ed. by A. I. Bogomolov, M.B. Temyanko, and L.I. Khotyntseva (Nedra, Leningrad, 1984) [in Russian].Google Scholar
  44. 44.
    VNIINP Transactions: Methods for Analysis, Investigation, and Testing of Crude Petroleum and Petroleum Products (Unconventional Procedures, Ed. by N. P. Sonina, M. M. Driatskaya, and M. M. Grine (VNIINP, Moscow, 1984) [in Russian].Google Scholar
  45. 45.
    E. V. Nikolaeva, G. M. Khrapkovskii, A. G. Shamov, Ways of Molecular Geometry Specification for Gaussian (Kazanskii Tekhnologicheskii Univ., Kazan, 2013) [in Russian].Google Scholar
  46. 46.
    O. V. Potapenko, V. P. Doronin, and T. P. Sorokina, Pet. Chem. 52, 55 (2012).CrossRefGoogle Scholar
  47. 47.
    A. V. Kravtsov, E. D. Ivanchina, E. N. Ivashkina, et al., Pet. Chem. 53 (4), 267 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. D. Ivanchina
    • 1
  • E. N. Ivashkina
    • 1
  • G. Yu. Nazarova
    • 1
  • G. Zh. Seitenova
    • 2
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Pavlodar State UniversityPavlodarKazakhstan

Personalised recommendations