Petroleum Chemistry

, Volume 58, Issue 3, pp 186–189 | Cite as

Formation of Petroleum Hydrocarbons from Prokaryote Biomass: 1. Formation of Petroleum Biomarker Hydrocarbons from Thermoplasma sp. Archaea Biomass

  • G. N. Gordadze
  • A. R. Poshibaeva
  • M. V. Giruts
  • A. A. Perevalova
  • V. N. Koshelev
Article
  • 11 Downloads

Abstract

Saturated hydrocarbon biomarkers (n-alkanes, isoprenanes, pregnanes, steranes, cheilanthanes, hopanes) in the soluble part and thermolysis products of the insoluble part of the biomass of Thermoplasma sp. archaea isolated from the Neftyanaya Ploshchadka hot spring of the Uzon volcano caldera (Kamchatka, Russia) have been identified by gas chromatography–mass spectrometry. The distribution of these hydrocarbons resembles that of slightly transformed marine oils generated in argillaceous-carbonate strata, a fact that is confirmed by Rock-Eval pyrolysis data for the biomass of the archaea studied.

Keywords

petroleum origin hydrocarbon biomarkers biomass of prokaryotes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Dedyukhina, N. Ladygina, and M. B. Vainshtein, Process Biochem. 41, 1001 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Blumenberg, B. Oppermann, R. Guyoneaud, and W. Michaelis, FEMS Microbiol. Lett. 293, 73 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Rohmer, P. Bouvier, and G. Ourisson, Eur. J. Biochem. 112, 557 (1980).CrossRefGoogle Scholar
  4. 4.
    A. R. Stroeva, M. V. Giruts, V. N. Koshelev, and G. N. Gordadze, Pet. Chem. 53, 331 (2013).CrossRefGoogle Scholar
  5. 5.
    A. R. Stroeva, M. V. Giruts, V. N. Koshelev, and G. N. Gordadze, Pet. Chem. 54, 347 (2014).CrossRefGoogle Scholar
  6. 6.
    G. N. Gordadze, Hydrocarbons in Petroleum Geochemistry: Theory and Practice (Rossiiskii Gosudarstvennyi Universitet Nefti I Gaza Imeni I.M. Gubkina, Moscow, 2015) [in Russian].Google Scholar
  7. 7.
    E. V. Koonin, Genome Biol. 11, 209 (2010).CrossRefGoogle Scholar
  8. 8.
    C. Schleper, G. Jurgens, and M. Jonuscheit, Nat. Rev. Microbiol. 3, 479 (2005).CrossRefGoogle Scholar
  9. 9.
    T. Sato and H. Atomi, Curr. Opin. Microbiol. 14, 307 (2011).CrossRefGoogle Scholar
  10. 10.
    P. G. Falkowski, T. Fenchel, and E. F. Delong, Science, 320, 1024 (2008).CrossRefGoogle Scholar
  11. 11.
    E. N. Frolov, A. Y. Merkel, N. V. Pimenov, et al., Microbiology 85, 471 (2016).CrossRefGoogle Scholar
  12. 12.
    N. L. Dobretsov, E. V. Lasareva, S. M. Zhmodik, et al., Russ. Geol. Geophys. 56, 39 (2015).CrossRefGoogle Scholar
  13. 13.
    V. V. Kevbrin and G. A. Zavarzin, Microbiology 61, 563 (1992).Google Scholar
  14. 14.
    E. A. Wolin, M. J. Wolin, and R. S. Wolfe, J. Biol. Chem. 238, 2882 (1963).Google Scholar
  15. 15.
    A. A. Petrov, Petroleum Hydrocarbons (Springer, Berlin, 1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. N. Gordadze
    • 1
  • A. R. Poshibaeva
    • 1
  • M. V. Giruts
    • 1
  • A. A. Perevalova
    • 2
  • V. N. Koshelev
    • 1
  1. 1.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia
  2. 2.Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations