Advertisement

Petroleum Chemistry

, Volume 58, Issue 3, pp 264–273 | Cite as

Progress in Technology and Catalysts for Continuous Stirred Tank Reactor Type Slurry Phase Polyethylene Processes

  • Dengfei Wang
  • Guoxing Yang
  • Feng Guo
  • Jian Wang
  • Yanfeng Jiang
Article
  • 40 Downloads

Abstract

High-density polyethylene (HDPE) have been widely used as materials of hollow molded articles, extrusion molded articles, films and sheets. The properties of HDPE vary depending on its application fields and processing methods thereof. Approximately 50 million tons of HDPE are produced annually around the worldwide by slurry phase processes. In this paper, the status of slurry phase polyethylene processes in China is briefly introduced. Two of the most important licensers of continuous stirred tank reactor (CSTR) type slurry phase polyethylene processes, namely, Hostalen (Licensed by Basell), CX (Licensed by Mitsui), with a dual- or three-reactor are reviewed. The merits and demerits of the examined polyethylene production technologies are discussed in detail. Catalyst is a key of polyolefin technology. It does have an extremely close relationship with the performance of polyethylene. The characteristics and disadvantages of different catalysts for the two processes are summarized for comparison, including the PZ and RZ catalysts of Mitsui, the BCH and BCE catalysts of Beijing Research Institute of Chemical Industry, the TH series catalysts of Basell. Some advices on the development and application of HDPE catalysts for the slurry process are proposed.

Keywords

polyethylene CX process Hostalen process slurry phase process catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Majid, Comparison of Catalytic Ethylene Polymerization in Slurry and Gas Phase (University of Twente, 2009).Google Scholar
  2. 2.
    A. J. Peacock, Handbook of Polyethylene: Structures, Properties, and Applications (Plastics Engineering, Marcel Dekker, Inc., 2000).Google Scholar
  3. 3.
    D. Wang, J. Wang, F. Guo, Y. Gao, W. Du, and G. Yang, Adv. Sci. Eng. 8, 25 (2016).Google Scholar
  4. 4.
    M. P. McDaniel, Adv. Catal. 53, 123 (2010).Google Scholar
  5. 5.
    H. Knuuttila, A. Lehtinen, and A. Nummila-Pakarinen, Adv. Polym. Sci. 169, 13 (2004).CrossRefGoogle Scholar
  6. 6.
    D. B. Malpass, Introduction to Industrial Polyethylene Properties, Catalysts, and Processes (Wiley Weinheim, 2010).CrossRefGoogle Scholar
  7. 7.
    N. P. Khare, K. C. Seavey, Y. A. Liu, S. Ramanathan, S. Lingard, and Chau-Chyun Chen, Ind. Eng. Chem. Res. 41, 5601 (2002).CrossRefGoogle Scholar
  8. 8.
    J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song, and Y. Liu, Polym. Chem. 2, 1611 (2011).CrossRefGoogle Scholar
  9. 9.
    H. R. Sailors and J. P. Hogan, J. Macromol. Sci., Part A 15, 1377 (1981).CrossRefGoogle Scholar
  10. 10.
    L. L. Böhm, Angew. Chem. Int. Edit. 42, 5010 (2003).CrossRefGoogle Scholar
  11. 11.
    M. O. Jejelowo, D. T. Lynch, and S. E. Wanke, Macromolecules 24, 1755 (1991).CrossRefGoogle Scholar
  12. 12.
    Z. Zhan, Z. Shao, X. Chen, Y. Zhao, X. Gu, Z. Yao, and L. Feng, Comput. Chem. Eng. 31, 645 (2012).Google Scholar
  13. 13.
    S. Hang, Modeling of Slurry Polyethylene Processes Using Aspen Plus (Zhejiang University, 2006).Google Scholar
  14. 14.
    C. Zhang, Z. Shao, X. Chen, Z. Yao, X. Gu, and L. T. Biegler, AICHE J. 60, 3442 (2014).CrossRefGoogle Scholar
  15. 15.
    I. E. Nifant’ev, O. V. Smetannikov, A. N. Tavtorkin, M. S. Chinova, and P. V. Ivchenko, Pet. Chem. 56, 480 (2016).CrossRefGoogle Scholar
  16. 16.
    J. R. Severn and J. C. Chadwick, Tailor-Made Polymers. Via Immobilization of Alpha-Olefin Polymerization Catalysts (Wiley-VCH, Weinheim, 2008).Google Scholar
  17. 17.
    Kashiwa Norio, Fuji Saburo, and Tanaka Masahide, US Patent No. 4071674 (1976).Google Scholar
  18. 18.
    T. Yashiki and S. Minami, JP Patent No. 3866790 (1996).Google Scholar
  19. 19.
    E. Li and B. Xu, China Synthetic Resin Plastic 13 (3), 20 (1996).Google Scholar
  20. 20.
    Z. Guo, W. Chen, and J. Zhou, Chin. J. Chem. Eng. 17, 530 (2009).CrossRefGoogle Scholar
  21. 21.
    J. Berthold, B. Diedrich, R. Franke, and J. Hartlapp, W. Schafer, and W. Strobel, US Patent No. 4447587 (1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Dengfei Wang
    • 1
    • 2
  • Guoxing Yang
    • 2
    • 3
  • Feng Guo
    • 2
  • Jian Wang
    • 1
  • Yanfeng Jiang
    • 2
  1. 1.College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqing City, Heilongjiang ProvinceChina
  2. 2.PetroChina Daqing Petrochemical Research Center of Petrochemical Research InstituteDaqing City, Heilongjiang ProvinceChina
  3. 3.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHaerbin City, Heilongjiang ProvinceChina

Personalised recommendations