Petroleum Chemistry

, Volume 58, Issue 3, pp 203–213 | Cite as

Synthesis Gas Production by Partial Oxidation of Methane and Dry Reforming of Methane in the Presence of Novel Ni–Co/MFI Catalysts

  • A. G. Dedov
  • A. S. Loktev
  • I. E. Mukhin
  • A. A. Karavaev
  • S. I. Tyumenova
  • A. E. Baranchikov
  • V. K. Ivanov
  • K. I. Maslakov
  • M. A. Bykov
  • I. I. Moiseev
Article
  • 17 Downloads

Abstract

Catalysts based on Ni, Co, and NiCo supported on MFI zeolites for the partial oxidation of methane and dry reforming of methane to synthesis gas have been synthesized and studied. The total metal content in the catalysts is 2 wt %. A commercial zeolite with a binder (alumina) and a binder-free zeolite synthesized by an accelerated microwave-assisted hydrothermal method are used as supports. The synthesis gas yield is 97% in the presence of Ni and NiCo catalysts supported on the MFI zeolite synthesized by the microwaveassisted hydrothermal method. The simultaneous presence of Ni and Co in the catalyst makes the sample resistant to coking during dry reforming of methane, whereas the Ni catalyst is characterized by the formation of a significant amount of carbon fibers.

Keywords

synthesis gas partial oxidation of methane dry reforming of methane cobalt nickel MFI zeolite microwave-assisted hydrothermal synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Holmen, Catal. Today, 142, (2009).Google Scholar
  2. 2.
    B. C. Enger, R. Lødeng, and A. Holmen, Appl. Catal., A 346, (2008).Google Scholar
  3. 3.
    S. Zeng, X. Zhang, X. Fu, et al., Appl. Catal., B 136/137, 308 (2013).CrossRefGoogle Scholar
  4. 4.
    Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger’s Vision Today, Ed. by M. Bertau, H. Offermanns, L.Plass, (Springer, Heidelberg, 2014).Google Scholar
  5. 5.
    L. M. T. S. Rodrigues, R. B. Silva, M. G. C. Rocha, et al., Catal. Today 197, 137 (2012).CrossRefGoogle Scholar
  6. 6.
    V. S. Arutyunov, Oxidative Conversion of Natural Gas (KRASAND, Moscow, 2011).Google Scholar
  7. 7.
    K. A. Chalupka, W. K. Jozwiak, J. Rynkowski, et al., Appl. Catal., B 146, 227 (2014).CrossRefGoogle Scholar
  8. 8.
    A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., Fuel Process. Technol. 148, 128 (2016).CrossRefGoogle Scholar
  9. 9.
    A. G. Dedov, A. S. Loktev, D. A. V. K. Ivanov, et al., Dokl. Phys. Chem. 461 (2), 73 (2015).CrossRefGoogle Scholar
  10. 10.
    A. I. Osman, J. Meudal, F. Laffir, et al. Appl. Catal., B 212, 68 (2017).CrossRefGoogle Scholar
  11. 11.
    J.-S. Chang, S.-E. Park, and H. Chon, Appl. Catal., A 145, 111 (1996).CrossRefGoogle Scholar
  12. 12.
    J. Estephane, S. Aouad, S Hany., et al. Int. J. Hydrogen Energy 40, 9201 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Luengnaruemitchai and A. Kaengsilalai, Chem. Eng. J. 144, 96 (2008).CrossRefGoogle Scholar
  14. 14.
    G. Moradi, F. Khezeli, and H. Hemmati, J. Nat. Gas Sci. Eng. 33, 657 (2016).CrossRefGoogle Scholar
  15. 15.
    A. N. Pinheiro, A. Valentini, J. M. Sasaki, and A. C. Oliveira, Appl. Catal., A 355, 156 (2009).CrossRefGoogle Scholar
  16. 16.
    P. Frontera, A. Aloise, A. Macario, et al., Top. Catal. 53, 265 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Estephane, M. Ayoub, Kh. Safieh, et al., C. R. Chim. 18, 277 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Abdollahifar, M. Haghighi, and M. Sharifi, Energy Conv. Manage. 103, 1101 (2015).CrossRefGoogle Scholar
  19. 19.
    C. Dai, S. Zhang, A. Zhang, et al., J. Mater. Chem. A 3, 16461 (2015).CrossRefGoogle Scholar
  20. 20.
    P. Frontera, A. Macario, A. Aloise, et al., Catal. Today 218/219, 18 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, ACS Catal. 3, 1855 (2013).CrossRefGoogle Scholar
  22. 22.
    N. Wang, K. Shen, L. Huang, et al., ACS Catal. 3, 1638 (2013).CrossRefGoogle Scholar
  23. 23.
    A. G. Dedov, A. S. Loktev, D. A. Levchenko, et al. Theor. Found. Chem. Eng. 49, 502 (2015).CrossRefGoogle Scholar
  24. 24.
    A. G. Dedov, A. S. Loktev, E. A. Isaeva, et al. Pet. Chem. 57, 678 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Dedov
    • 1
  • A. S. Loktev
    • 1
  • I. E. Mukhin
    • 1
  • A. A. Karavaev
    • 1
  • S. I. Tyumenova
    • 1
  • A. E. Baranchikov
    • 2
  • V. K. Ivanov
    • 2
  • K. I. Maslakov
    • 3
  • M. A. Bykov
    • 3
  • I. I. Moiseev
    • 1
  1. 1.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations