Skip to main content
Log in

Synthesis of Zeolite NaA at Low Temperatures: Characterization, Cobalt Exchange and Enhanced Catalytic Activity of Styrene Epoxidation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Zeolites NaA were synthesized with the crystallization temperatures of 25, 40, 60, and 95°C, then converted into Co2+–NaA catalysts by an ion-exchange method. The samples were characterized and the results revealed that the higher the reaction temperature, the shorter the crystallization time and the bigger the particle size of zeolite NaA will be. Zeolite NaA kept its crystal structure before and after cobalt exchange. However, the introduction of cobalt ions into zeolite would result in a decrease in the intensity of all crystallographic reflexes. Furthermore, Co2+–NaA (25°C zeolite sample) was shown to exhibit better catalytic activity of styrene epoxidation as compared with that of Co2+–NaA (40, 60, and 95° zeolite sample) catalysts, which may be ascribed to its short diffusion path and enhanced physical transport of reactant and product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Centi, F. Cavani, and F. Trifiro, Selective Oxidation by Heterogeneous Catalysis (Kluwer Academic Publishers, New York, 2001).

    Book  Google Scholar 

  2. Q. H. Xia, H. Q. Ge, C. P. Ye, Z. M. Liu, and K. X. Su, Chem. Rev. 105, 1603 (2005).

    Article  CAS  Google Scholar 

  3. M. Lapkin, Kirk–Othmer Encyclopedia of Chemical Technology (Wiley, New York, 1967).

    Google Scholar 

  4. V. R. Choudhary, R. Jha, and P. Jana, Catal. Commun. 10, 205 (2008).

    Article  CAS  Google Scholar 

  5. N. Linares, C. P. Canlas, J. Garcia-Martinez, and T. J. Pinnavaia, Catal. Commun. 44, 50 (2014).

    Article  CAS  Google Scholar 

  6. D. Monti, A. Pastorini, G. Mancini, S. Borocci, and P. Tagliatesta, J. Mol. Catal. A: Chem. 179, 125 (2002).

    Article  CAS  Google Scholar 

  7. M. Salavati-Niasari, J. Mol. Catal. A: Chem. 278, 22 (2007).

    Article  CAS  Google Scholar 

  8. L. Ma, F. Su, W. Guo, S. Zhang, Y. Guo, and J. Hu, Micropor. Mesopor. Mat. 169, 16 (2013).

    Article  CAS  Google Scholar 

  9. J. Haber, M. Kłosowski, and J. Połtowicz, J. Mol. Catal. A: Chem. 201, 167 (2003).

    Article  CAS  Google Scholar 

  10. J. Liu, F. Wang, Z. Gua, and X. Xu, Catal. Commun. 10, 868 (2009).

    Article  CAS  Google Scholar 

  11. Q. Gu, D. Han, L. Shi, and Q. Sun, J. Nat. Gas Chem. 21, 452 (2012).

    Article  CAS  Google Scholar 

  12. R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, London, 1978).

    Google Scholar 

  13. M. Wacław, M. Kinga, and M. Dorota, Micropor. Mesopor. Mat. 166, 137 (2013).

    Article  Google Scholar 

  14. Y. Wang, F. Lin, and W. Pang, J. Hazard. Mater. 160, 371 (2008).

    Article  CAS  Google Scholar 

  15. Q. Tang, Y. Wang, J. Liang, P. Wang, Q. Zhang, and H. Wan, Chem. Commun., No. 4, 440 (2004).

    Article  Google Scholar 

  16. D. Zhou, B. Tang, X. H. Lu, X. L. Wei, K. Li, and Q. H. Xia, Catal. Commun. 45, 124 (2014).

    Article  CAS  Google Scholar 

  17. B. Tang, X. H. Lu, D. Zhou, J. Lei, Z. H. Niu, J. Fan, and Q. H. Xia, Catal. Commun. 21, 68 (2012).

    Article  CAS  Google Scholar 

  18. G. Xu, Q. H. Xia, X. H. Lu, Q. Zhang, and H. J. Zhan, J. Mol. Catal. A: Chem. 266, 180 (2007).

    Article  CAS  Google Scholar 

  19. Q. Tang, Q. Zhang, H. Wu, and Y. Wang, J. Catal. 230, 384 (2005).

    Article  CAS  Google Scholar 

  20. P. Pal, J. K. Das, N. Das, and S. Bandyopadhyay, Ultrason. Sonochem. 20, 314 (2013).

    Article  CAS  Google Scholar 

  21. X. Zhang, D. Q. Tong, J. J. Zhao, and X. Y. Li, Mater. Lett. 104, 80 (2013).

    Article  CAS  Google Scholar 

  22. C. Kosanovic, K. Havancsak, B. Subotic, V. Svetlicic, T. M. Radic, A. Cziraki, G. Huhn, I. Buljan, and V. Smrecki, Micropor. Mesopor. Mater. 142, 139 (2011).

    Article  CAS  Google Scholar 

  23. C. F. Wang, J. S. Li, L. J. Wang, and X. Y. Sun, J. Hazard. Mater. 155, 58 (2008).

    Article  CAS  Google Scholar 

  24. K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (William Andrew Publishing, LLC, Norwich, New York, 2000).

    Google Scholar 

  25. V. P. Valtchev and K. N. Bozhilov, J. Phys. Chem. B 108, 15587 (2004).

    Article  CAS  Google Scholar 

  26. Z. Sarbak and M. Lewandowski, Appl. Catal. A: Gen. 208, 317 (2001).

    Article  CAS  Google Scholar 

  27. J. Sebastian, K. M. Jinka, and R. V. Jasra, J. Catal. 244, 208 (2006).

    Article  CAS  Google Scholar 

  28. J. Aguado, D. P. Serrano, J. M. Escola, and J. M. Rodriguez, Micropor. Mesopor. Mater. 75, 41 (2004).

    Article  CAS  Google Scholar 

  29. V. P. Valtchev, K. N. Bozhilov, M. Smaihi, and L. Tosheva, Stud. Surf. Sci. Catal. 158, 73 (2005).

    Article  Google Scholar 

  30. V. Valtchev, S. Rigolet, and K. N. Bozhilov, Micropor. Mesopor. Mater. 101, 73 (2007).

    Article  CAS  Google Scholar 

  31. T. M. Davis, T. O. Drews, H. Ramanan, C. He, J. Dong, H. Schnablegger, M. A. Katsoulakis, E. Kokkoli, A. V. McCormick, R. L. Penn, and M. Tsapatsis, Nat. Mater. 5, 400 (2006).

    Article  CAS  Google Scholar 

  32. L. Hu, Z. Zhang, S. Xie, S. Liu, and L. Xu, Catal. Commun. 10, 900 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Additional information

Published in Russian in Neftekhimiya, 2017, Vol. 57, No. 6, pp. 713–719.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Sun, G. & Yang, R. Synthesis of Zeolite NaA at Low Temperatures: Characterization, Cobalt Exchange and Enhanced Catalytic Activity of Styrene Epoxidation. Pet. Chem. 57, 1093–1098 (2017). https://doi.org/10.1134/S0965544117120180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117120180

Keywords

Navigation