Petroleum Chemistry

, Volume 57, Issue 12, pp 1093–1098 | Cite as

Synthesis of Zeolite NaA at Low Temperatures: Characterization, Cobalt Exchange and Enhanced Catalytic Activity of Styrene Epoxidation



Zeolites NaA were synthesized with the crystallization temperatures of 25, 40, 60, and 95°C, then converted into Co2+–NaA catalysts by an ion-exchange method. The samples were characterized and the results revealed that the higher the reaction temperature, the shorter the crystallization time and the bigger the particle size of zeolite NaA will be. Zeolite NaA kept its crystal structure before and after cobalt exchange. However, the introduction of cobalt ions into zeolite would result in a decrease in the intensity of all crystallographic reflexes. Furthermore, Co2+–NaA (25°C zeolite sample) was shown to exhibit better catalytic activity of styrene epoxidation as compared with that of Co2+–NaA (40, 60, and 95° zeolite sample) catalysts, which may be ascribed to its short diffusion path and enhanced physical transport of reactant and product.


synthesis zeolite NaA ion exchange catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Centi, F. Cavani, and F. Trifiro, Selective Oxidation by Heterogeneous Catalysis (Kluwer Academic Publishers, New York, 2001).CrossRefGoogle Scholar
  2. 2.
    Q. H. Xia, H. Q. Ge, C. P. Ye, Z. M. Liu, and K. X. Su, Chem. Rev. 105, 1603 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Lapkin, Kirk–Othmer Encyclopedia of Chemical Technology (Wiley, New York, 1967).Google Scholar
  4. 4.
    V. R. Choudhary, R. Jha, and P. Jana, Catal. Commun. 10, 205 (2008).CrossRefGoogle Scholar
  5. 5.
    N. Linares, C. P. Canlas, J. Garcia-Martinez, and T. J. Pinnavaia, Catal. Commun. 44, 50 (2014).CrossRefGoogle Scholar
  6. 6.
    D. Monti, A. Pastorini, G. Mancini, S. Borocci, and P. Tagliatesta, J. Mol. Catal. A: Chem. 179, 125 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, J. Mol. Catal. A: Chem. 278, 22 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Ma, F. Su, W. Guo, S. Zhang, Y. Guo, and J. Hu, Micropor. Mesopor. Mat. 169, 16 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Haber, M. Kłosowski, and J. Połtowicz, J. Mol. Catal. A: Chem. 201, 167 (2003).CrossRefGoogle Scholar
  10. 10.
    J. Liu, F. Wang, Z. Gua, and X. Xu, Catal. Commun. 10, 868 (2009).CrossRefGoogle Scholar
  11. 11.
    Q. Gu, D. Han, L. Shi, and Q. Sun, J. Nat. Gas Chem. 21, 452 (2012).CrossRefGoogle Scholar
  12. 12.
    R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, London, 1978).Google Scholar
  13. 13.
    M. Wacław, M. Kinga, and M. Dorota, Micropor. Mesopor. Mat. 166, 137 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, F. Lin, and W. Pang, J. Hazard. Mater. 160, 371 (2008).CrossRefGoogle Scholar
  15. 15.
    Q. Tang, Y. Wang, J. Liang, P. Wang, Q. Zhang, and H. Wan, Chem. Commun., No. 4, 440 (2004).CrossRefGoogle Scholar
  16. 16.
    D. Zhou, B. Tang, X. H. Lu, X. L. Wei, K. Li, and Q. H. Xia, Catal. Commun. 45, 124 (2014).CrossRefGoogle Scholar
  17. 17.
    B. Tang, X. H. Lu, D. Zhou, J. Lei, Z. H. Niu, J. Fan, and Q. H. Xia, Catal. Commun. 21, 68 (2012).CrossRefGoogle Scholar
  18. 18.
    G. Xu, Q. H. Xia, X. H. Lu, Q. Zhang, and H. J. Zhan, J. Mol. Catal. A: Chem. 266, 180 (2007).CrossRefGoogle Scholar
  19. 19.
    Q. Tang, Q. Zhang, H. Wu, and Y. Wang, J. Catal. 230, 384 (2005).CrossRefGoogle Scholar
  20. 20.
    P. Pal, J. K. Das, N. Das, and S. Bandyopadhyay, Ultrason. Sonochem. 20, 314 (2013).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, D. Q. Tong, J. J. Zhao, and X. Y. Li, Mater. Lett. 104, 80 (2013).CrossRefGoogle Scholar
  22. 22.
    C. Kosanovic, K. Havancsak, B. Subotic, V. Svetlicic, T. M. Radic, A. Cziraki, G. Huhn, I. Buljan, and V. Smrecki, Micropor. Mesopor. Mater. 142, 139 (2011).CrossRefGoogle Scholar
  23. 23.
    C. F. Wang, J. S. Li, L. J. Wang, and X. Y. Sun, J. Hazard. Mater. 155, 58 (2008).CrossRefGoogle Scholar
  24. 24.
    K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (William Andrew Publishing, LLC, Norwich, New York, 2000).Google Scholar
  25. 25.
    V. P. Valtchev and K. N. Bozhilov, J. Phys. Chem. B 108, 15587 (2004).CrossRefGoogle Scholar
  26. 26.
    Z. Sarbak and M. Lewandowski, Appl. Catal. A: Gen. 208, 317 (2001).CrossRefGoogle Scholar
  27. 27.
    J. Sebastian, K. M. Jinka, and R. V. Jasra, J. Catal. 244, 208 (2006).CrossRefGoogle Scholar
  28. 28.
    J. Aguado, D. P. Serrano, J. M. Escola, and J. M. Rodriguez, Micropor. Mesopor. Mater. 75, 41 (2004).CrossRefGoogle Scholar
  29. 29.
    V. P. Valtchev, K. N. Bozhilov, M. Smaihi, and L. Tosheva, Stud. Surf. Sci. Catal. 158, 73 (2005).CrossRefGoogle Scholar
  30. 30.
    V. Valtchev, S. Rigolet, and K. N. Bozhilov, Micropor. Mesopor. Mater. 101, 73 (2007).CrossRefGoogle Scholar
  31. 31.
    T. M. Davis, T. O. Drews, H. Ramanan, C. He, J. Dong, H. Schnablegger, M. A. Katsoulakis, E. Kokkoli, A. V. McCormick, R. L. Penn, and M. Tsapatsis, Nat. Mater. 5, 400 (2006).CrossRefGoogle Scholar
  32. 32.
    L. Hu, Z. Zhang, S. Xie, S. Liu, and L. Xu, Catal. Commun. 10, 900 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXuchang UniversityXuchangChina
  2. 2.College of Biological and Chemical EngineeringAnhui Polytechnic UniversityWuhuChina

Personalised recommendations