Petroleum Chemistry

, Volume 57, Issue 12, pp 1036–1042 | Cite as

Zinc-Modified ZSM-5 Nanozeolites Synthesized by the Seed-Induced Method: Interrelation of Their Textural, Acidic, and Catalytic Properties in DME Conversion to Hydrocarbons

  • Ke Zhang
  • S. A. Kurumov
  • Xiaofang Su
  • Yu. M. Snatenkova
  • Z. M. Bukina
  • N. V. Kolesnichenko
  • Wei Wu
  • S. N. Khadzhiev


The effect of the method of introduction of zinc cations and the zinc content in a nanocrystalline zeolite of the ZSM-5 type on the physicochemical and catalytic properties of the material in DME conversion to a mixture of liquid synthetic hydrocarbons has been studied. Zinc is introduced into the catalysts both during the zeolite synthesis and the ion exchange (Zn n Al m NZ5 and ZnNZ5, respectively). The use of nanocrystalline Zn n Al m NZ5 zeolites provides the formation of a mixture of liquid hydrocarbons with a high selectivity of no less than 90%; the liquid hydrocarbons contain more than 70% of isoparaffins and a small amount of aromatic compounds. An increase in the zinc loading of the Zn n Al m NZ5 zeolite from 0.9 to ~3% leads to an increase in the methanol content in the aqueous phase of the liquid product, an increase in the selectivity for liquid hydrocarbons, and a slight increase in the concentration of aromatic and unsaturated hydrocarbons in the mixture. In the presence of the ZnNZ5/Al2O3 catalyst with Zn introduced by ion exchange, the methanol content in the aqueous phase and the aromatics content in the liquid hydrocarbon mixture are significantly higher. The Zn n Al m NZ5 nanozeolites are characterized by a more developed external surface, a higher concentration of mesopores, and higher acidity.


zeolite nanocrystals zeolite catalyst dimethyl ether liquid hydrocarbons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Sheldon, Chemicals from Synthesis Gas (Springer—Science + Business Media, Dordrecht, 1983).CrossRefGoogle Scholar
  2. 2.
    J. F. Haw, W. G. Song, D. M. Marcus, and J. B. Nicholas, Acc. Chem. Res. 36, 317 (2003).CrossRefGoogle Scholar
  3. 3.
    G. A. Mills, Chem. Tech. (Leipzig) 29, 418 (1977).Google Scholar
  4. 4.
    S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2442767 (2010).Google Scholar
  5. 5.
    Haldor Topsøe A/S, Selective Hydrocarbon Synthesis: Demonstration Project (EUR 11808) (Office for Official Publications of the European Communities, Luxembourg, 1988).Google Scholar
  6. 6.
    J. B. Hansen, B. Voss, F. Joensen, and I. D. Sigurdardottir, Large scale manufacture of dimethyl ether—a new alternative diesel fuel from natural gas, SAE Paper, 950063 (1995).CrossRefGoogle Scholar
  7. 7.
    S. A. Skornikova, B. N. Bazhenov, and M. I. Tselyutina, RU Patent No. 2322294 (2008).Google Scholar
  8. 8.
    S. Lee, M. R. Gogate, K. L. Fullerton, and C. J. Kulik, US Patent No. 5459166 (1995).Google Scholar
  9. 9.
    A. Ya. Rozovskii, Khim. Interes. Ustoich. Razv. 13, 701 (2005).Google Scholar
  10. 10.
    B. Liu, L. France, C. Wu, et al., Chem. Sci. 6, 5152 (2015).CrossRefGoogle Scholar
  11. 11.
    Ya. S. Yakh”yaev, L. G. Agabalyan, N. S. Khashagul’gova, and S. N. Khadzhiev, in Proceedings of III All-Union Conferences on Mechanisms of Catalytic Reactions (Novosibirsk, 1982), Part 1, p. 126 [in Russian].Google Scholar
  12. 12.
    A. L. Lapidus and A. A. Dergachev, in Proceedings of DGMK-Conference (Munich, 2004), p. 193.Google Scholar
  13. 13.
    L. R. R. de Araujo and M. Schmal, Appl. Catal., A 235, 139 (2002).CrossRefGoogle Scholar
  14. 14.
    P. L. de Cola, R. Glaser, and J. Weitkamp, Appl. Catal., A 306, 85 (2006).CrossRefGoogle Scholar
  15. 15.
    L.E. Kitaev, Z. M. Bukina, V.V. Yushchenko, et al., Russ. J. Phys. Chem. A 88, 381 (2014).CrossRefGoogle Scholar
  16. 16.
    Z. M. Kolesnichenko, L. E. Bukina, S. A. Kitaev, et al., Pet. Chem. 56, 829 (2016).Google Scholar
  17. 17.
    C. Y. Hsu, A. S. T. Chiang, R. Selvin, and R. W. Thompson, J. Phys. Chem. B. 109, 18804 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Firoozi, M. Baghalha, and M. Asadi, Catal. Commun. 10, 1582 (2009).CrossRefGoogle Scholar
  19. 19.
    L. G. Wang, S. Y. Sang, S. H. Meng, et al., Mater. Lett. 61, 1675 (2007).CrossRefGoogle Scholar
  20. 20.
    Z. Gabelica and S. Valange, Micropor. Mesopor. Mater. 30, 57 (1999).CrossRefGoogle Scholar
  21. 21.
    V. R. Choudhary, A. K. Kinage, and T. V. Choudhary, Science 275, 1286 (1997).CrossRefGoogle Scholar
  22. 22.
    N. R. C. F. Machado, V. Calsavara, N. G. C. Astrath, et al., Appl. Catal., A 311, 193 (2006).CrossRefGoogle Scholar
  23. 23.
    G. Wang, W. Wu, W. Zan, et al., Trans. Nonferrous Met. Soc. China 25, 1580 (2015).CrossRefGoogle Scholar
  24. 24.
    S. N. Khadzhiev, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2442650 (2010).Google Scholar
  25. 25.
    G. Q. Zhang, T. Bai, T. F. Chen, et al. Ind. Eng. Chem. Res. 53, 14932 (2014).CrossRefGoogle Scholar
  26. 26.
    E. Kh. Batova, G. N. Khivrich, N. V. Shirobokova, et al., Pet. Chem. 53, 383 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Ke Zhang
    • 1
  • S. A. Kurumov
    • 2
  • Xiaofang Su
    • 1
  • Yu. M. Snatenkova
    • 2
  • Z. M. Bukina
    • 2
  • N. V. Kolesnichenko
    • 2
  • Wei Wu
    • 1
  • S. N. Khadzhiev
    • 2
  1. 1.National Center for International Research on Catalytic Technology, School of Chemistry and Material SciencesHeilongjiang UniversityHarbin, HeilongjiangChina
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations