Petroleum Chemistry

, Volume 57, Issue 12, pp 1012–1017 | Cite as

Analysis of Sour Oil Ozonation Products by Ultra-High Resolution Mass-Spectrometry

  • A. V. Stavitskaya
  • M. L. Konstantinova
  • S. D. Razumovskii
  • R. Z. Safieva
  • V. A. Vinokurov


Ozonation products of sour crude oil have been determined at the molecular level by means of ion cyclotron resonance Fourier-transform mass spectrometry in soft ionization modes. It has been shown that a proper choice of ozonation conditions makes it possible to selectively ozonize heteroatomic nitrogen, sulfur, and oxygen compounds, such as pyrrole derivatives, sulfides, disulfides, thiophene derivatives, resins, and asphaltenes. It has been found that the hydrocarbon portion of the oil is not ozonized under the given conditions.


ozone ozonation sour oil heteroatomic petroleum compounds petroleum sulfur compounds oxidative desulfurization ultra-high resolution mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Stavitskaya, Candidate’s Dissertation in Engineering (Moscow, 2015) [in Russian].Google Scholar
  2. 2.
    J. Li, L. N. Yang, and J. Shen, Pet. Sci. Technol. 29, 247 (2011).CrossRefGoogle Scholar
  3. 3.
    J. L. Garcia-Gutierrez, G. A. Fuentes, M. E. Hernandez-Teran, et al., Appl. Catal., A 305, 15 (2006).CrossRefGoogle Scholar
  4. 4.
    J. L. Garcia-Gutierrez, G. A. Fuentes, M. E. Hernandez-Teran, et al., Appl. Catal., A 334, 366 (2008).CrossRefGoogle Scholar
  5. 5.
    X. Jiang, H. Li, W. Zhu, et al., Fuel 88, 431 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Ma, B. Dai, P. Liu, et al., J. Ind. Eng. Chem. 20, 2769 (2014).CrossRefGoogle Scholar
  7. 7.
    B. Kasprzyk-Hordern and M. Ziolek, Appl. Catal., B 46, 639 (2003).CrossRefGoogle Scholar
  8. 8.
    N. M. Likhterova, V. V. Lunin, V. N. Torkhovskii, et al., Khim. Tekhnol. Topl. Masel, No. 4, 18 (2006).Google Scholar
  9. 9.
    Z. Cha, PhD Thesis (2009).Google Scholar
  10. 10.
    G. V. Tarakanov and A. A. Kazakov, Vestn. Astrakhansk. Gos. Tekh. Univ., No. 2, 65 (2011).Google Scholar
  11. 11.
    O. Turkay, H. Inan, and A. Dimoglo, Sep. Purif. Technol. 134, 110 (2014).CrossRefGoogle Scholar
  12. 12.
    A. V. Akopyan, Candidate’s Dissertation in Chemistry (Moscow, 2015) [in Russian].Google Scholar
  13. 13.
    V. D. Kam’yanov, A. K. Lebedev, and P. P. Sivirilov, Ozonolysis of Petroleum Feedstock (MGN “Rasko”, Tomsk, 1997) [in Russian].Google Scholar
  14. 14.
    A. V. Stavitskaya, M. L. Konstantinova, S. D. Razumovskii, et al., Vestn. Kazansk. Tekhnol. Univ. 16 (22) (2013).Google Scholar
  15. 15.
    S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1974) [in Russian].Google Scholar
  16. 16.
    P. S. Bailey, Chem. Rev. 58, 925 (1958).CrossRefGoogle Scholar
  17. 17.
    A. Gaspar, E. Zellermann, S. Lababidi, et al., Energy Fuels 26, 3481 (2012).CrossRefGoogle Scholar
  18. 18.
    M. M. M. Guilherme and P. Dalmaschio, Fuel 115, 190 (2014).CrossRefGoogle Scholar
  19. 19.
    A. G. Marshall, C. L. Hendrickson, and G. S. Jackson, Mass Spectrom. Rev. 17, 1 (1998).CrossRefGoogle Scholar
  20. 20.
    C. A. Hughey, C. L. Hendrickson, R. P. Rodgers, et al., Anal. Chem. 73, 4676 (2001).CrossRefGoogle Scholar
  21. 21.
    A. V. Stavitskaya, M. L. Konstantinova, and R. Z. Safieva, Pet. Chem. 56, 623 (2016).CrossRefGoogle Scholar
  22. 22.
    A. V. Stavitskaya and R. Z. Safieva, Tr. RGU 279, 117 (2015).Google Scholar
  23. 23.
    S. Otsuki, T. Nonaka, N. Takashima, et al., Energy Fuels 14, 1232 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Stavitskaya
    • 1
  • M. L. Konstantinova
    • 2
  • S. D. Razumovskii
    • 2
  • R. Z. Safieva
    • 1
  • V. A. Vinokurov
    • 1
  1. 1.Gubkin Russian State University of Oil and GasMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations