Petroleum Chemistry

, Volume 57, Issue 12, pp 1007–1011 | Cite as

Simple Spectrophotometric Method for Determination of Iron in Crude Oil

  • A. B. Shehata
  • G. G. Mohamed
  • M. A. Gab-Allah


In this research article, spectrophotometric method for the determination of iron with 1,10-phenanthroline (phen) in two different crude oil samples from different oil fields in the Suez-Gulf region of Egypt has been proposed. The method is efficient, reliable and inexpensive where a cost-effective technique, along with commercially available spectrophotometric reagent, was utilized in this work. The method was based on decomposition of the organic matrix by combustion in a heating muffle furnace at 550°C. The inorganic residue was then dissolved in diluted nitric acid and the iron was reduced to the divalent state. The color was developed by the addition of 1,10-phenanthroline as chelating agent after adjusting the pH of the solution, then the absorbance of the solution was measured at approximately 510 nm after a short reaction period. The limit of detection (LOD) and limit of quantification (LOQ) obtained were found to be 0.017 and 0.051 μg/mL, respectively. The effect of interferences was studied and the accuracy of the method was evaluated by recovery experiment, analysis of oil reference material and by comparison of results with those obtained using flame atomic absorption spectrometer (FAAS) after dilution in an organic solvent for sample preparation.


spectrophotometry crude oil combustion iron determination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Speight, The Chemistry and Technology of Petroleum, 4th ed., Taylor & Francis Group, 2006.Google Scholar
  2. 2.
    J. G. Speight, Handbook of Petroleum Product Analysis, New Jersey: John Wiley & Sons, 2002.Google Scholar
  3. 3.
    I. M. Dittert, J. S. A. Silva, R. G. O. Araujo, A. J. Curtius, B. Welz, and H. Becker-Ross, Spectrochim. Acta Pt. B, 64, 537 (2009).CrossRefGoogle Scholar
  4. 4.
    ASTM D5863–00a: Standard Test Methods for Determination of Nickel, Vanadium, Iron, and Sodium in Crude Oils and Residual Fuels by Flame Atomic Absorption Spectrometry (Reapproved 2005), 2000.Google Scholar
  5. 5.
    ASTM D5708–05: Standard Test Methods for Determination of Nickel, Vanadium, and Iron in Crude Oils and Residual Fuels by Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry, 2005.Google Scholar
  6. 6.
    T. A. Maryutina and N. S. Musina, J. Anal. Chem. 67, 862 (2012).CrossRefGoogle Scholar
  7. 7.
    E. M. Sedykh, L. N. Bannykh, G. S. Korobeinik, and N. P. Starshinova, Inorg. Mater. 47, 1539 (2011).CrossRefGoogle Scholar
  8. 8.
    G. Brandão, R. C. de Campos, E. V. R. de Castro, and H. C. de Jesus, Spectrochim. Acta Pt. B 62, 962 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Duyck, N. Miekeleyda, C. L. P. Silveira, R. Q. Aucélio, R. C. Campos, P. Grinberg, and G. P. Brandão, Spectrochim. Acta Pt. B 62, 939 (2007).CrossRefGoogle Scholar
  10. 10.
    A. de Jesus, A. V. Zmozinski, I. C. F. Damin, M. M. Silva, and M. G. R. Vale, Spectrochim. Acta Pt. B 71–72, 86 (2012).CrossRefGoogle Scholar
  11. 11.
    G. P. Brandão, R. C. de Campos, E. V. R. de Castro, and H. C. de Jesus, Anal. Bioanal. Chem. 386, 2249 (2006).CrossRefGoogle Scholar
  12. 12.
    R. M. Souza, A. L. S. Meliande, C. L. P. Silveira, and R. Q. Aucélio, Microchem. J. 82, 137 (2006).CrossRefGoogle Scholar
  13. 13.
    R. M. Souza, C. L. P. Silveira, and R. Q. Aucélio, Anal. Sci. 20, 351 (2004).CrossRefGoogle Scholar
  14. 14.
    J. S. F. Pereira, D. P. Moraes, F. G. Antes, L. O. Diehl, M. F. P. Santos, R. C. L. Guimarães, T. C. O. Fonseca, V. L. Dressler, and É. M. M. Flores, Microchem. J. 96, 4 (2010).CrossRefGoogle Scholar
  15. 15.
    J. Heilmann, S. F. Boulyga, and K. G. Heumann, J. Anal. At. Spectrom. 24, 385 (2009).CrossRefGoogle Scholar
  16. 16.
    C. Duycka, N. Miekeleya, C. L. P. da Silveiraa, and P. Szatmarib, Spectrochim. Acta Pt. B 57, 1979 (2002).CrossRefGoogle Scholar
  17. 17.
    L. H. Christensen and A. Agerbo, Anal. Chem. 53, 1788 (1981).CrossRefGoogle Scholar
  18. 18.
    H. Kubo and R. Bernthal, Anal. Chem. 50, 899 (1978).CrossRefGoogle Scholar
  19. 19.
    M. F. Gazulla, M. Orduña, S. Vicente, and M. Rodrigo, Fuel 108, 247 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Y. Khuhawar and S. N. Lanjwani, Talanta 43, 767 (1996).CrossRefGoogle Scholar
  21. 21.
    S. N. Lanjwani, K. P. Mahar, and A. H. Channer, Chromatographia 43, 431 (1996).CrossRefGoogle Scholar
  22. 22.
    S. D. Olsen, Analyst 120, 1379 (1995).CrossRefGoogle Scholar
  23. 23.
    D. J. Adeyemo, I. M. Umar, S. A. Jonah, S. A. Thomas, E. B. Agbaji, and E. H. K. Akaho, J. Radioanal. Nucl. Chem. 261, 229 (2004).CrossRefGoogle Scholar
  24. 24.
    C. Chifang, D. Zhuguo, F. Jiamo, and S. Guoying, J. Radioanal. Nucl. Chem. 151, 177 (1991).CrossRefGoogle Scholar
  25. 25.
    K. Danzer and L. A. Currie, Pure Appl. Chem. 70, 993 (1998).CrossRefGoogle Scholar
  26. 26.
    ASTM E 394–00: Standard test method for iron in trace quantities using the 1,10-phenanthroline method, 2000.Google Scholar
  27. 27.
    Z. Kowalewska, A. Ruszczyńska, and E. Bulska, Spectrochim. Acta Pt. B 60, 351 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. B. Shehata
    • 1
  • G. G. Mohamed
    • 2
  • M. A. Gab-Allah
    • 1
  1. 1.National Institute of Standards, Tersa StHaram, GizaEgypt
  2. 2.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations