Skip to main content
Log in

Dynamics of Formation of Asphalt Microstructure According to Modulated Differential Scanning Calorimetry Data

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The structural thermal properties of petroleum asphalts (using the BNK 40/180 brand as an example) have been analyzed by modulated differential scanning calorimetry (DSC). The method is based on separation of the overlapping reversing and nonreversing structural thermal processes upon temperature modulation of a heat flow, which makes it possible to observe, analyze, and quantitatively assess the thermal effects that are displayed on the temperature curves of conventional DSC. The method ensures the separation of crystallization (melting) processes and glass transitions. The temporal dynamics of the formation of asphalt microstructure is determined by rapid (shorter than 1 h), medium (up to 16 h), and slow (longer than 16 h) thermal processes of crystallization of paraffin hydrocarbons (HCs) of various structures and separation of asphaltenes into an individual nanosized phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Polacco, S. Filippi, F. Merusi, and G. Stastna, Adv. Colloid Interface Sci. 224, 2 (2015).

    Article  Google Scholar 

  2. J. Zhu, B. Birgisson, and N. Kringos, Eur. Polym. J. 54, 18 (2014).

    Article  CAS  Google Scholar 

  3. I. N. Frolov, T. N. Yusupova, M. A. Ziganshin, et al., Colloid J. 78, 712 (2016).

    Article  CAS  Google Scholar 

  4. H. R. Fischer and A. Cernescu, Fuel 153, 628 (2015).

    Article  CAS  Google Scholar 

  5. J. G. Speight, The Chemistry and Technology of Petroleum, 5th Ed. (CRC, Boca Raton, 2014).

    Google Scholar 

  6. M. Le Guern, E. Chaillenx, F. Farcas, et al., Fuel 89, 3330 (2010).

    Article  Google Scholar 

  7. D. Lesueur, Adv. Colloid Interface Sci. 145, 42 (2009).

    Article  CAS  Google Scholar 

  8. J. P. Planche, P. M. Claudy, J. M. Letoffe, and D. Martin, Thermochim. Acta 324, 223 (1998).

    Article  CAS  Google Scholar 

  9. B. Wunderlich, Thermal Analysis of Polymeric Materials (Springer, Berlin, 2005).

    Google Scholar 

  10. J. F. Masson and G. M. Polomark, Thermochim. Acta 374, 105 (2001).

    Article  CAS  Google Scholar 

  11. J. F. Masson, G. M. Polomark, S. Bundalo-Pere, and P. Collins, Thermochim. Acta 440, 132 (2006).

    Article  CAS  Google Scholar 

  12. I. N. Frolov, T. N. Yusupova, M. A. Ziganshin, et al., Neftepererab. Neftekhim., No. 5, 10 (2016).

    Google Scholar 

  13. J. F. Masson, G. M. Polomark, and P. Collins, Energy Fuel 16, 470 (2002).

    Article  CAS  Google Scholar 

  14. A.-J. Briard, M. Bouroukba, D. Petitjean, et al., Fuel 85, 764 (2006).

    Article  CAS  Google Scholar 

  15. X. Lu, M. Langton, P. Olofsson, and P. Redelius, J. Mater. Sci. 40, 1893 (2005).

    Article  CAS  Google Scholar 

  16. X. Lu and P. Redelius, Energy Fuel 20, 653 (2006).

    Article  CAS  Google Scholar 

  17. E. P. Gilbert, Phys. Chem. Chem. Phys. 1, 1517 (1999).

    Article  CAS  Google Scholar 

  18. X. Guo, B. A. Pethica, J. S. Huang, and R. K. Prud’-homme, Macromolecules 37, 5638 (2004).

    Article  CAS  Google Scholar 

  19. A. Hammami, J. Ratulowski, and J. A. P. Coutinho, Pet. Sci. Technol. 21, 345 (2003).

    Article  CAS  Google Scholar 

  20. F. F. A. Hollander, O. Stasse, J. Suchtelen, and W. J. P. Enckevort, J. Cryst. Growth 233, 868 (2001).

    Article  CAS  Google Scholar 

  21. C. Luo and J.-U. Sammer, Phys. Rev. Lett. 102, 147801 (2009).

    Article  Google Scholar 

  22. B. Wunderlich, Prog. Polym. Sci. 28, 383 (2003).

    Article  CAS  Google Scholar 

  23. L. C. Michon, D. A. Netzel, T. F. Turner, Energy Fuels 13, 602 (1999).

    Article  CAS  Google Scholar 

  24. D. Y. Hourston, M. Song, F. U. Scafer, et al., Thermochim. Acta 324, 109 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Firsin.

Additional information

Original Russian Text © I.N. Frolov, T.N. Yusupova, M.A. Ziganshin, E.S. Okhotnikova, A.A. Firsin, 2017, published in Neftekhimiya, 2017, Vol. 57, No. 6, pp. 622–627.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, I.N., Yusupova, T.N., Ziganshin, M.A. et al. Dynamics of Formation of Asphalt Microstructure According to Modulated Differential Scanning Calorimetry Data. Pet. Chem. 57, 1002–1006 (2017). https://doi.org/10.1134/S0965544117120039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117120039

Keywords

Navigation