Advertisement

Petroleum Chemistry

, Volume 57, Issue 12, pp 1115–1120 | Cite as

Peculiarities of the Catalytic Activity of Copper Compound Containing Ligand with Paramagnetic Centers

  • L. A. Smurova
  • O. N. Sorokina
  • A. L. Kovarskii
Article
  • 9 Downloads

Abstract

Experimental data have been obtained to evaluate the catalytic activity of copper chelate Cu(NO•)2 with the paramagnetic ligand in the degradation reactions of hydroperoxide and diacyl peroxide in the aprotic solvent chlorobenzene or in ethyl alcohol, which is capable of forming intermolecular hydrogen bonds. The presence of paramagnetic centers in the ligand have an insignificant effect on the catalytic activity of the copper chelate in the reaction with tetralyl hydroperoxide and benzoyl peroxide in chlorobenzene as compared to another compound CuL2, which have no paramagnetic centers in the ligand. The catalytic activity of Cu(NO)2 has been found to increase during the reaction with benzoyl peroxide in chlorobenzene, in contrast to CuL2, which is completely deactivated in this reaction. The EPR spectra of the chelate Cu(NO)2 exhibit a signal due to the nitroxide radical alone. The signal of the central Cu atom is not observed; i.e., there is the case of EPR-undetectable copper in this coordination compound.

Keywords

metals with variable valence paramagnetic centers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Ovcharenko and R. Z. Sagdeev, Usp. Khim. 68, 55 (1999).CrossRefGoogle Scholar
  2. 2.
    S. V. Larionov, V. I. Ovcharenko, V. N. Kirichenko, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 14 (1982).Google Scholar
  3. 3.
    I. P. Skibida, M. Ya. Brodskii, and Ya. M. Gervits, Kinet. Katal. 14, 885 (1973).Google Scholar
  4. 4.
    E. T. Denisov, T. G. Denisova, and T. S. Pokidova, Handbook of Free Radical Initiators (Wiley–Interscience, Hoboken, NJ, 2005).Google Scholar
  5. 5.
    T. V. Sirota and A. B. Gagarina, Dokl. Akad. Nauk SSSR 245, 657 (1979).Google Scholar
  6. 6.
    L. A. Smurova and T. D. Nekipelova, Pet. Chem. 48, 454 (2008).CrossRefGoogle Scholar
  7. 7.
    L. A. Smurova and Z. S. Kartasheva, Russ. J. Phys. Chem. B 7, 748 (2013).CrossRefGoogle Scholar
  8. 8.
    R. B. Svitych, A. L. Buchachenko, O. P. Yablonskii, et al., Kinet. Katal. 15, 125 (1974).Google Scholar
  9. 9.
    M. Dubey, R. R. Koner, and M. Ray, Inorg. Chem. 48, 9294 (2009).CrossRefGoogle Scholar
  10. 10.
    A. N. Kuznetsov, A. M. Wasserman, A. U. Volkov, and N. N. Korst, Chem. Phys. Lett. 12, 103 (1971).CrossRefGoogle Scholar
  11. 11.
    J. Freed, and G. Fraenkel, J. Chem. Phys. 39, 103 (1963).CrossRefGoogle Scholar
  12. 12.
    N. A. Sysoeva, T. I. Pekkh, E. T. Lippmmaa, and A. L. Buchachenko, Zh. Strukt. Khim. 13, 419 (1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. A. Smurova
    • 1
  • O. N. Sorokina
    • 2
  • A. L. Kovarskii
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations