Petroleum Chemistry

, Volume 57, Issue 12, pp 1043–1051 | Cite as

Olefin Synthesis from Dimethyl Ether in the Presence of a Hydrothermally Treated Mg–HZSM-5/Al2O3 Catalyst: Effect of Reaction Conditions on the Product Composition and Ratio

  • M. V. Magomedova
  • E. G. Peresypkina
  • I. A. Davydov
  • S. N. Khadzhiev


Systematic studies of olefin synthesis from dimethyl ether (DME) in the presence of a hydrothermally treated HZSM-5 zeolite catalyst modified with magnesium have been conducted. Dependences of DME conversion, product yield and selectivity, and lower olefin ratio on space time in the temperature range of 320–360°C have been analyzed. The type of the resulting products has been determined, and assumptions about the reaction chemistry have been made to reveal the role of methylation and hydrogen-transfer reactions in the products formation.


olefin synthesis dimethyl ether HZSM-5 zeolite chemistry kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Olsbye, S. Svelle, M. Bjorgen, et al., Angew. Chem. Int. Ed. 51, 5810 (2012).CrossRefGoogle Scholar
  2. 2.
    M. W. Erichsen, S. Svelle, and U. Olsby, J. Catal. 298, 94 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Lesthaege, J. van der Mynsbrugge, M. Vandichel, et al., Chem. Catal. Chem. 3, 208 (2011).Google Scholar
  4. 4.
    S. Svelle, P. O. Ronning, and S. Kolboe, J. Catal. 224, 115 (2004).CrossRefGoogle Scholar
  5. 5.
    X. Sun, S. Mueller, H. Shi, et al., J. Catal. 314, 21 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Svelle, P. O. Ronning, U. Olsbye, and S. Kolboe, J. Catal. 234, 385 (2005).CrossRefGoogle Scholar
  7. 7.
    S. Svelle, S. Kolboe, O. Swang, and U. Olsbye, J. Phys. Chem. B 109, 12874 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Svelle, M. Visur, U. Olsbye, and M. Bjorgen, Top. Catal. 54, 897 (2011).CrossRefGoogle Scholar
  9. 9.
    X. Sun, S. Mueller, Y. Liu, et al., J. Catal. 317, 185 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Rabiu and S. Al-Khattaf, Ind. Eng. Chem. Res. 47, 39 (2008).CrossRefGoogle Scholar
  11. 11.
    I. M. Hill, S. A. Hashimi, and A. Bhan, J. Catal. 285, 115 (2012).CrossRefGoogle Scholar
  12. 12.
    I. M. Hill, A. Malek, and A. Bhan, ACS Catal. 3, 1992 (2013).CrossRefGoogle Scholar
  13. 13.
    D. A. Simonetti, R. T. Carr, and E. Iglesia, J. Catal. 285, 19 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Boronat, P. Viruela, and A. A. Corma, J. Phys. Chem. A 102, 9863 (1998).CrossRefGoogle Scholar
  15. 15.
    D. A. Simonetti, J. H. Ahn, and E. Iglesia, Chem. Catal. Chem. 3, 704 (2011).Google Scholar
  16. 16.
    M. Boronat, P. Viruela, and A. Corma, J. Phys. Chem. B 103, 7809 (1999).CrossRefGoogle Scholar
  17. 17.
    A. T. Aguayo, D. Mier, A. G. Gayubo, et al., Ind. Eng. Chem. Res. 49, 12371 (2010).CrossRefGoogle Scholar
  18. 18.
    P. Kumar, J. W. Thybaut, S. Svelle, et al., Ind. Eng. Chem. Res. 52, 1491 (2013).CrossRefGoogle Scholar
  19. 19.
    H. A. Zaidi and K. K. Pant, Korean J. Chem. Eng. 27, 1404 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Huang, H. Li, W.-D. Xiao, and D. Chen, Chem. Eng. J. 299, 263 (2016).CrossRefGoogle Scholar
  21. 21.
    C. D. Chang and A. J. Silvestri, J. Catal. 47, 249 (1977).CrossRefGoogle Scholar
  22. 22.
    A. S. Al-Dughaither, PhD Dissertation (The University of Western Ontario, 2014).Google Scholar
  23. 23.
    T. S. Zhao, T. Takemoto, and N. Tsubaki, Catal. Commun. 7, 647 (2006).CrossRefGoogle Scholar
  24. 24.
    T. I. Goriyanova, E. N. Biryukova, N. V. Kolesnichenko, and S. N. Khadzhiev, Pet. Chem. 51, 169 (2011).CrossRefGoogle Scholar
  25. 25.
    S. N. Khadzhiev, N. V. Kolesnichenko, E. N. Khivrich, et al., Pet. Chem. 53, 225 (2013).CrossRefGoogle Scholar
  26. 26.
    T. I. Batova, E. N. Khivrich, G. N. Shirobokova, et al., Pet. Chem. 53, 383 (2013).CrossRefGoogle Scholar
  27. 27.
    H. Yamazaki, H. Shima, H. Imai, T. Yokoi, T. Tatsumi, J. N. Kondo, J. Phys. Chem. C, 24091 (2012).Google Scholar
  28. 28.
    P. Perez-Uriarte, A. Ateka, M. Gamero, et al., Ind. Eng. Chem. Res. 55, 6569 (2016).CrossRefGoogle Scholar
  29. 29.
    P. Perez-Uriarte, A. Ateka, A. T. Aguayo, et al., Chem. Eng. J. 302, 801 (2016).CrossRefGoogle Scholar
  30. 30.
    A. Sardesai, T. Tartamella, and S. Lee, Pet. Sci. Technol. 17, 273 (1999).CrossRefGoogle Scholar
  31. 31.
    A. S. Al-Dughaither and H. Lasa, Fuel 138, 52 (2014).CrossRefGoogle Scholar
  32. 32.
    P. Perez-Uriarte, M. Gamero, A. Ateka, et al., Ind. Eng. Chem. Res. 55, 1513 (2016).CrossRefGoogle Scholar
  33. 33.
    A. G. Vlessidisa, L. Nalbandianb, and N. P. Evmiridisa, Microporous Mesoporous Mater. 47, 369 (2001).CrossRefGoogle Scholar
  34. 34.
    L. H. Ong, M. Domok, R. Olindo, et al., Microporous Mesoporous Mater. 164, 9 (2012).CrossRefGoogle Scholar
  35. 35.
    S. M. T. Almutairi, B. Mezari, E. A. Pidko, et al., J. Catal. 307, 194 (2013).CrossRefGoogle Scholar
  36. 36.
    S. M. Campbell, D. M. Bibby, J. M. Coddington, et al., J. Catal. 161, 338 (1996).CrossRefGoogle Scholar
  37. 37.
    S. Zhang, Y. Gong, L. Zhang, et al., Fuel Process. Technol. 129, 130 (2015).CrossRefGoogle Scholar
  38. 38.
    S. N. Khadzhiev, Catalytic Cracking: Refinery Engineer’s Handbook, Ed. by G. A. Lastovkin, E. D. Radchenko, and M. G. Rudin (Khimiya, Leningrad, 1986) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Magomedova
    • 1
  • E. G. Peresypkina
    • 1
  • I. A. Davydov
    • 1
  • S. N. Khadzhiev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations