Petroleum Chemistry

, Volume 57, Issue 12, pp 1156–1160 | Cite as

Use of a Dual-Bed System for Producing Diesel Fuel from a Mixture of Straight-Run Diesel and Rapeseed Oil over Sulfide Catalysts

  • E. N. Vlasova
  • I. V. Deliy
  • E. Yu. Gerasimov
  • P. V. Aleksandrov
  • A. L. Nuzhdin
  • G. I. Aleshina
  • G. A. Bukhtiyarova
Article
  • 3 Downloads

Abstract

A dual-bed catalytic system including MoS2/Al2O3 and Co–MoS2/Al2O3 catalysts is proposed for the process of production of diesel fuel with the sulfur content of less than 10 ppm from a straight-run diesel fraction containing 10–45 wt % rapeseed oil. The conversion of rapeseed oil to alkanes proceeds in the MoS2/Al2O3 catalyst bed via the route of “direct” hydrodeoxygenation without the formation of carbon oxides, and the hydrodesulfurization of the diesel fraction occurs in the bed of the Co–MoS2/Al2O3 hydrotreating catalyst. Using this system provides an increase in the yield of diesel fuel and a decrease in the formation of greenhouse gases in comparison with conventional Co(Ni)–MoS2/Al2O3 catalysts.

Keywords

triglycerides sulfide catalysts CoMoS NiMoS rapeseed oil hydrodeoxygenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Yakovlev, S. A. Khromova, and V. I. Bukhtiyarov, Usp. Khim. 80, 955 (2011).CrossRefGoogle Scholar
  2. 2.
    E. Furimsky, Catal. Today 217, 13 (2013).CrossRefGoogle Scholar
  3. 3.
    D. P. Mel’nikov, I. A. Tiunov, M. S. Kotelev, and E. V. Ivanov, Tekhnol. Nefti Gaza, No. 2, 11 (2014).Google Scholar
  4. 4.
    M. Al-Sabawi and J. Chen, Energy Fuels 26, 5373 (2012).CrossRefGoogle Scholar
  5. 5.
    D. Kubička and L. Kaluža, Appl. Catal., A 372, 199 (2010).CrossRefGoogle Scholar
  6. 6.
    G. W. Huber, P. O'Connor, and A. Corma, Appl. Catal., A 329, 120 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Stanislaus, A. Marafi, and M. S. Rana, Catal. Today 153, 1 (2010).CrossRefGoogle Scholar
  8. 8.
    E. N. Vlasova, I. V. Deliy, A. L. Nuzhdin, et al, Kinet. Catal. 55, 481 (2014).CrossRefGoogle Scholar
  9. 9.
    P. A. Nikul’shin, V. A. Sal’nikov, Al. A. Pimerzin, et al., Pet. Chem. 56, 56 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Bezergianni, V. Dagonikou, and S. Sklari, Fuel Process. Technol. 144, 20 (2016).CrossRefGoogle Scholar
  11. 11.
    F. Pelardy, A. Daudin, E. Devers, C. Dupont, P. Raybaud, S. Brunet, Appl. Catal., B 183, 317 (2016).CrossRefGoogle Scholar
  12. 12.
    M. R. de Brimont, C. Dupont, A. Daudin, et al., J. Catal. 286, 153 (2012).CrossRefGoogle Scholar
  13. 13.
    I. V. Deliy, E. N. Vlasova, A. L. Nuzhdin, E. Yu. Gerasimov, G. A. Bukhtiyarova, RSC Adv. 4, 2242 (2014).CrossRefGoogle Scholar
  14. 14.
    P. V. Aleksandrov, G. A. Bukhtiyarova, and A. S. Noskov, Catal. Ind. 7, 47 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. N. Vlasova
    • 1
    • 2
  • I. V. Deliy
    • 1
    • 2
  • E. Yu. Gerasimov
    • 1
    • 2
  • P. V. Aleksandrov
    • 1
    • 2
  • A. L. Nuzhdin
    • 1
    • 2
  • G. I. Aleshina
    • 1
  • G. A. Bukhtiyarova
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research UniversityNovosibirskRussia

Personalised recommendations