Petroleum Chemistry

, Volume 57, Issue 12, pp 1186–1189 | Cite as

Synthesis of Low-Pour-Point Diesel Fuel in the Presence of a Composite Cobalt-Containing Catalyst

  • A. P. Savost’yanov
  • G. B. Narochnyi
  • R. E. Yakovenko
  • A. N. Saliev
  • S. I. Sulima
  • I. N. Zubkov
  • S. V. Nekroenko
  • S. A. Mitchenko
Article
  • 2 Downloads

Abstract

Production of synthetic diesel fuel by the Fischer–Tropsch (FT) method in the presence of a composite catalyst prepared by mechanically mixing 35 wt % Co/SiO2, 30 wt % HZSM-5, and 30 wt % Al2O3 has been studied. The catalyst has been characterized by the H2 TPR, H2 TPD, NH3 TPD, XRD, SEM, and TEM methods. Catalytic properties have been studied in a fixed-bed flow reactor at 2 MPa and a GHSV of 1000 h–1 in the temperature range of 230–250°C. The highest efficiency and C5+ HC selectivity values of 130 kg/(m3 h) and 72.5%, respectively, are achieved at 250°C. The low-temperature properties of the synthetic diesel fuel meet the requirements for winter diesel.

Keywords

Fischer–Tropsch synthesis composite catalyst winter diesel fuel HZSM-5 zeolite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Energy Strategy of Russia until 2035 (Basics) (Minenergo, Moscow, 2015) [in Russian].Google Scholar
  2. 2.
    A. V. Kameshkov and A. A. Gaile, Izv. SPbGTI (Tech. Univ.), No. 29, 49 (2015).Google Scholar
  3. 3.
    A. F. Kemalov, R. A. Kemalov, D. Z. Valiev, and I. M. Abdrafikova, Life Sci. J. 11, 461 (2014).Google Scholar
  4. 4.
    T. P. Kiseleva, R. R. Aliev, and M. I. Tselyutina, Neftepererab. Neftekhim., No. 2, 3 (2016).Google Scholar
  5. 5.
    J. Ellepola, N. Thijssen, J. Grievink, et al., Comput. Chem. Eng. 42, 2 (2012).CrossRefGoogle Scholar
  6. 6.
    A. P. Savost’yanov, R. E. Yakovenko, G. B. Narochnyi, et al., RU Patent No. 20161503741 (2017).Google Scholar
  7. 7.
    A. P. Savost’yanov, R. E. Yakovenko, S. I. Sulima, et al., Catal. Today 279, 107 (2017).CrossRefGoogle Scholar
  8. 8.
    G. B. Narochnyi, A. P. Savost’yanov, R. E. Yakovenko, and V. G. Bakun, Catal. Ind. 8, 139 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Sartipi, J. E. Dijk, J. Gascon, and F. Kapteijn, Appl. Catal., A 456, 11 (2013).CrossRefGoogle Scholar
  10. 10.
    The Rietveld Method, Ed. by R. A. Young (Oxford: Oxford University Press, 1995).Google Scholar
  11. 11.
    D. Xu, W. Li, H. Duan, et al., J. Catal. Lett. 102, 229 (2005).CrossRefGoogle Scholar
  12. 12.
    J. P. Breejen, P. B. Radstake, G. L. Bezemer, et al., J. Am. Chem. Soc. 131, 7197 (2009).CrossRefGoogle Scholar
  13. 13.
    F. Diehl and A. Y. Khodakov, Oil Gas Sci. Technol. Rev. 64, 11 (2009).CrossRefGoogle Scholar
  14. 14.
    A. P. Savost’yanov, R. E. Yakovenko, G. B. Narochnyi, et al., Kinet. Catal. 58, 81 (2017).CrossRefGoogle Scholar
  15. 15.
    F. Lonyi and J. Valyon, Microporous Mesoporous Mater. 47, 293 (2001).CrossRefGoogle Scholar
  16. 16.
    D. A. Tarakanov, L. V. Sineva, and A. Yu. Krylova, Katal. Prom–sti., No. 3, 18 (2006).Google Scholar
  17. 17.
    E. Rytter and A. Holmen, ACS Catal. 7, 5321 (2017).CrossRefGoogle Scholar
  18. 18.
    E. Iglesia, Stud. Surf. Sci. Catal. 107, 53 (1997).Google Scholar
  19. 19.
    G. V. Echevskii, A. V. Toktarev, D. G. Aksenov, and E. G. Kodenev, Katal. Prom–sti. 17, 236 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. P. Savost’yanov
    • 1
  • G. B. Narochnyi
    • 1
  • R. E. Yakovenko
    • 1
  • A. N. Saliev
    • 1
  • S. I. Sulima
    • 1
  • I. N. Zubkov
    • 1
  • S. V. Nekroenko
    • 1
  • S. A. Mitchenko
    • 1
    • 2
  1. 1.Platov South-Russian State Polytechnic UniversityNovocherkassk, Rostov oblastRussia
  2. 2.Litvinenko Institute of Physical Organic Chemistry and Coal ChemistryDonetskUkraine

Personalised recommendations