Advertisement

Petroleum Chemistry

, Volume 57, Issue 12, pp 1190–1193 | Cite as

Features of the Kinetics and Mechanism of Stearic Acid Decarbonylation in the Presence of a Silica Gel-Supported Nickel Sulfide Catalyst

  • E. A. Katsman
  • V. Ya. Danyushevsky
  • P. S. Kuznetsov
  • V. M. Karpov
  • H. A. Al-Wadhaf
  • V. R. Flid
Article
  • 14 Downloads

Abstract

The substitution of silica gel for γ-Al2O3 to be used as a support for a nickel sulfide catalyst for stearic acid decarbonylation leads to a significant increase in the catalyst activity and a slight improvement of the heptadecene selectivity. Comparison with the γ-Al2O3-supported catalyst has been made in terms of the kinetic model based on experimental data. An increase in the catalyst activity is attributed to a decrease in the strength of the active site–reactant adsorption complexes on the basis of the Sabatier–Balandin principle. Relationships between the features of the reaction mechanism, the acidity of the support, and the nanoparticle size of the active substance have been discussed.

Keywords

decarbonylation reaction mechanism stearic acid nickel sulfide catalyst silica gel alumina adsorption complexes active sites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Berenblyum, V. Ya. Danyushevsky, P. S. Kuznetsov, et al., Pet. Chem. 56, 663 (2016).CrossRefGoogle Scholar
  2. 2.
    E. A. Katsman, V. Ya. Danyushevsky, P. S. Kuznetsov, et al., Kinet. Catal. 58, 147 (2017).CrossRefGoogle Scholar
  3. 3.
    V. Ya. Danyushevsky, P. S. Kuznetsov, E. A. Katsman, et al., Russ. Chem. Bull. 66, 463 (2017).CrossRefGoogle Scholar
  4. 4.
    N. A. Grosso-Giordano, T. R. Eaton, Z. Bo, et al., Appl. Catal., B 192, 93 (2016).CrossRefGoogle Scholar
  5. 5.
    O. N. Tsvetkov, Poly-α-olefin Oils: Chemistry, Technology, and Applications (Tekhnika, Moscow, 2006) [in Russian].Google Scholar
  6. 6.
    V. G. Gorskii, E. A. Katsman, F. D. Klebanova, and A. A. Grigor’ev, Theor. Exp. Chem. 23, 181 (1987).CrossRefGoogle Scholar
  7. 7.
    N. M. Emanuel and D. G. Knorre, Chemical Kinetics (Vyssh. Shkola, Moscow, 1984), 4th Ed. [in Russian].Google Scholar
  8. 8.
    Concepts of Modern Catalysis and Kinetics, Ed. by I. Chorkendorff and J. W. Niemantsverdriet (Wiley–VCH, Weinheim, 2007), 2nd Ed.Google Scholar
  9. 9.
    O. V. Krylov, Heterogeneous Catalysis (Akademkniga, Moscow, 2004) [in Russian].Google Scholar
  10. 10.
    V. I. Bukhtiyarov and M. G. Slinko, Russ. Chem. Rev. 70, 147 (2001).CrossRefGoogle Scholar
  11. 11.
    Nanomaterials in Catalysis, Ed. by Ph. Serp and K. Philippot (Wiley–VCH, Weinheim, 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. A. Katsman
    • 1
  • V. Ya. Danyushevsky
    • 1
  • P. S. Kuznetsov
    • 1
  • V. M. Karpov
    • 1
  • H. A. Al-Wadhaf
    • 2
  • V. R. Flid
    • 1
  1. 1.Lomonosov Institute of Fine Chemical TechnologiesMoscow Technological UniversityMoscowRussia
  2. 2.Hajjah UniversityHajjahRepublic of Yemen

Personalised recommendations