Advertisement

Petroleum Chemistry

, Volume 57, Issue 5, pp 353–373 | Cite as

Catalytic chemistry of dimethyl ether (review)

  • E. A. Volnina
  • M. A. Kipnis
  • S. N. Khadzhiev
Article
  • 121 Downloads

Abstract

Heterogeneous catalytic reactions of dimethyl ether (DME) with various compounds (alkenes, aromatic compounds, CO, etc.) are surveyed. Analysis of published data allows the conclusion that the formation of products generally involves surface intermediates produced by the interaction of DME with Brønsted acid sites. There is no formation of water in this case, suggesting that DME can be preferred to methanol in some cases. Surface intermediates CH*3 which are bound to the oxygen atoms of the zeolite lattice (methoxides) and retain their reactivity in the case of temperature elevation to 473 K have been identified using IR, UV, and in situ high-resolution solid-state NMR spectroscopy. Based upon the data on the state of intermediates that are formed from DME on the surface of heterogeneous catalysts, a series of catalytic reactions involving DME, namely, methylation of alkenes and aromatic compounds, carbonylation, synthesis of ethanol, and partial oxidation resulting in a set of compounds have been considered. Some reactions, such as carbonylation of DME by synthesis gas, synthesis of ethanol, and synthesis of dimethoxymethane and polyoxymethylene dimethyl ether, are of industrial interest.

Keywords

dimethyl ether zeolite methoxide carbonylation ethanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Haro, F. Trippe, R. Stahl, and E. Henrich, Appl. Energy 108, 54 (2013).CrossRefGoogle Scholar
  2. 2.
    R. Fornell, T. Berntsson, and A. Åsblad, Energy 50, 83 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Bhattacharya K. B. Kabir, and K. Hein, Prog. Energy Combust. Sci. 39, 577 (2013).CrossRefGoogle Scholar
  4. 4.
    S. N. Khadzhiev, M. V. Magomedova, and E. G. Peresypkina, Pet. Chem. 55, 7 (2015).Google Scholar
  5. 5.
    P. Tian, Y. Wei, M. Ye, and Z. Li, ACS Catal. 5, 1922 (2015).CrossRefGoogle Scholar
  6. 6.
    K. Hemelsoet, J. van der Mynsbrugge, K. de Wispelaere, et al., ChemPhysChem 14, 1526 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Ilias and A. Bhan, ACS Catal. 3, 18 (2013).CrossRefGoogle Scholar
  8. 8.
    T. Mokrani and M. Scurrell, Catal. Rev. 51, 1 (2009).CrossRefGoogle Scholar
  9. 9.
    E. Ramos, L. Davin, I. Angurell, et al., Chem-CatChem 7, 2179 (2015).Google Scholar
  10. 10.
    M. Yang, Y. Men, S. Li, and G. Chen, Appl. Catal., A 433/434, 26 (2012).CrossRefGoogle Scholar
  11. 11.
    J. Lu, S. Zhou, K. Ma, M. Meng, Y. Tian, Chin. J. Catal. 36, 1295 (2015).CrossRefGoogle Scholar
  12. 12.
    S. N. Khadzhiev, M. V. Magomedova, and E. G. Peresypkina, Pet. Chem. 56, 181 (2016).CrossRefGoogle Scholar
  13. 13.
    T. R. Forester and R. F. Howe, J. Am. Chem. Soc. 109, 5076 (1987).CrossRefGoogle Scholar
  14. 14.
    S. Svelle, M. Visur, U. Olsbye, et al., Top. Catal. 54, 897 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Ono and T. Mori, J. Chem. Soc., Faraday Trans. 77, 2209 (1981).CrossRefGoogle Scholar
  16. 16.
    W. Wang, Y. Jiang, and M. Hunger, Catal. Today 113, 102 (2006).CrossRefGoogle Scholar
  17. 17.
    W. Wang, M. Seiler, and M. Hunger, J. Phys. Chem. B 105, 12553 (2001). 3 * CHCrossRefGoogle Scholar
  18. 18.
    W. Wang, A. Buchholz, A. Arnold, et al., Chem. Phys. Lett. 370, 88 (2003).CrossRefGoogle Scholar
  19. 19.
    W. Wang, A. Buchholz, M. Seiler, and M. Hunger, J. Am. Chem. Soc. 125, 15260 (2003).CrossRefGoogle Scholar
  20. 20.
    V. Bosacek, J. Phys. Chem. 97, 10732 (1993).CrossRefGoogle Scholar
  21. 21.
    V. Bosacek, Z. Phys. Chem. 189, 241 (1995).CrossRefGoogle Scholar
  22. 22.
    V. Bosacek, H. Ernst, D. Freude, and T. Mildner, Appl. Spectrosc. 18, 196 (1997).Google Scholar
  23. 23.
    Y. Jiang, W. Wang, V. R. R. Marthala, et al., J. Catal. 238, 21 (2006).CrossRefGoogle Scholar
  24. 24.
    W. Wang and M. Hunger, Acc. Chem. Res. 41, 895 (2008).CrossRefGoogle Scholar
  25. 25.
    P. Cheung, A. Bhan, G. J. Sunley, et al., J. Catal. 245, 110 (2007).CrossRefGoogle Scholar
  26. 26.
    P. Cheung, A. Bhan, G. J. Sunley, and E. Iglesia, Angew. Chem., Int. Ed. Engl. 45, 1617 (2006).CrossRefGoogle Scholar
  27. 27.
    Y. Jiang, M. Hunger, and W. Wang, J. Am. Chem. Soc. 128, 11679 (2006).CrossRefGoogle Scholar
  28. 28.
    A. G. Stepanov, Usp. Khim. 68, 619 (1999).CrossRefGoogle Scholar
  29. 29.
    Proceedings of the 12th International Zeolite Conference, Ed. by M. M. J. Treacy, B. K. Marcus, M. E. Bisher, and J. B. Higgins (Materials Research Society, Warrendale, PA, 1999).Google Scholar
  30. 30.
    M. W. Anderson and J. Klinowski, Nature 339, 200 (1989).CrossRefGoogle Scholar
  31. 31.
    M. W. Anderson and J. Klinowski, J. Am. Chem. Soc. 112, 10 (1990).CrossRefGoogle Scholar
  32. 32.
    P. O. Ronning, U. Olsbye, and S. Kolboe, J. Catal. 234, 385 (2005).CrossRefGoogle Scholar
  33. 33.
    S. Svelle, P. O. Ronning, and S. Kolboe, J. Catal. 224, 115 (2004).CrossRefGoogle Scholar
  34. 34.
    I. M. Hill, Y. S. Ng, and A. Bhan, ACS Catal. 2, 1742 (2012).CrossRefGoogle Scholar
  35. 35.
    I. M. Hill, S. A. Hashimi, and A. Bhan, J. Catal. 291, 155 (2012).CrossRefGoogle Scholar
  36. 36.
    V. van Speybroeck, J. van der Mynsbrugge, M. Vandichel, et al., J. Am. Chem. Soc. 133, 888 (2011).CrossRefGoogle Scholar
  37. 37.
    S. Svelle, C. Tuma, X. Rozanska, et al., J. Am. Chem. Soc. 131, 816 (2009).CrossRefGoogle Scholar
  38. 38.
    R. Y. Brogaard, R. Henry, Y. Schuurman, et al., J. Catal. 314, 159 (2014).CrossRefGoogle Scholar
  39. 39.
    A. M. Vos, K. H. L. Nulens, F. De Proft, et al., J. Phys. Chem. B 106, 2026 (2002).CrossRefGoogle Scholar
  40. 40.
    T. Maihom, B. Boefka, J. Sirijaraensre, et al., J. Phys. Chem. C 113, 6654 (2009).CrossRefGoogle Scholar
  41. 41.
    S. Svelle, S. Kolboe, O. Swang, and U. Olsbye, J. Phys. Chem. B 109, 12874 (2005).CrossRefGoogle Scholar
  42. 42.
    S. Svelle, S. Kolboe, U. Olsbye, and O. Swang, J. Phys. Chem. B 107, 5251 (2003).CrossRefGoogle Scholar
  43. 43.
    M. N. Mazar, S. Al-Hashimi, A. Bhan, and M. Cococcioni, J. Phys. Chem. C 116, 19385 (2012).CrossRefGoogle Scholar
  44. 44.
    I. Hill, PhD Dissertation (University of Minessota, Minessota, 2013).Google Scholar
  45. 45.
    A. Széchenyi and F. Solymosi, Catal. Lett. 127, 13 (2009).CrossRefGoogle Scholar
  46. 46.
    Y. W. Fang, J. Tang, X. C. Huang, et al., Chin. J. Catal 31, 264 (2010).CrossRefGoogle Scholar
  47. 47.
    H. Liu, H. Wei, W. Xin, et al., J. Energy Chem. 23, 617 (2014).CrossRefGoogle Scholar
  48. 48.
    B. Li, J. Xu, B. Han, et al., J. Phys. Chem. C 117, 5840 (2013).CrossRefGoogle Scholar
  49. 49.
    X. F. Wu and H. Neumann, ChemCatChem 4, 447 (2012).CrossRefGoogle Scholar
  50. 50.
    F. Li, B. Chen, Z. Huang, et al., Green Chem. 15, 1600 (2013).CrossRefGoogle Scholar
  51. 51.
    K. Fujimoto, T. Shikada, K. Omata, and H. Tominaga, Chem. Lett. 13, 2047 (1984).CrossRefGoogle Scholar
  52. 52.
    B. Ellis, M. J. Howard, R. W. Joyner, et al., Stud. Surf. Sci. Catal. 101, 771 (1996).CrossRefGoogle Scholar
  53. 53.
    W. J. Smith, US Patent No. 5420345 (1995).Google Scholar
  54. 54.
    A. G. Stepanov, M. V. Luzgin, V. N. Romannikov, et al., J. Catal. 164, 411 (1996).CrossRefGoogle Scholar
  55. 55.
    Q. Xu, S. Inoue, N. Tsumori, et al., J. Mol. Catal. A 170, 147 (2001).CrossRefGoogle Scholar
  56. 56.
    S. Kuba, P. Lukinskas, R. K. Grasselli, et al., J. Catal. 216, 353 (2003).CrossRefGoogle Scholar
  57. 57.
    A. Martinez, G. Prieto, M. A. Arribas, and P. Concepcion, Appl. Catal., A 309, 224 (2006).CrossRefGoogle Scholar
  58. 58.
    A. Bhan, A. D. Allian, G. J. Sunley, et al., J. Am. Chem. Soc. 129, 4919 (2007).CrossRefGoogle Scholar
  59. 59.
    M. Boronat, C. Martinez-Sanchez, D. Law, and A. Corma, J. Am. Chem. Soc. 130, 16316 (2008).CrossRefGoogle Scholar
  60. 60.
    S. Y. Park, C. Shin, and J. Bae, Catal. Commun. 75, 28 (2016).CrossRefGoogle Scholar
  61. 61.
    X. Li, X. San, Y. Zhang, et al., ChemSusChem 3, 1192 (2010).CrossRefGoogle Scholar
  62. 62.
    J. Liu, H. Xue, X. Huang, et al., Catal. Lett. 139, 33 (2010).CrossRefGoogle Scholar
  63. 63.
    P. M. Arvela, I. Kubickova, M. Snare, et al., Energy Fuels 21, 30 (2007).CrossRefGoogle Scholar
  64. 64.
    K. Faungnawakij, Y. Tanaka, N. Shimoda, et al., Appl. Catal., A 304, 40 (2006).CrossRefGoogle Scholar
  65. 65.
    T. A. Semelsberger, K. C. Ott, R. L. Borup, and H. L. Greene, Appl. Catal. B 61, 281 (2005).CrossRefGoogle Scholar
  66. 66.
    R. W. Wegman, J. Chem. Soc., Chem. Commun., 947 (1994).Google Scholar
  67. 67.
    A. Sardesai, S. Lee, and T. Tartamella, Energy Sources 24, 301 (2002).CrossRefGoogle Scholar
  68. 68.
    G. G. Volkova, L. M. Plyasova, A. N. Salanov, et al., Catal. Lett. 80, 175 (2002).CrossRefGoogle Scholar
  69. 69.
    M. S. Kazantsev, M. V. Luzgin, G. G. Volkova, and A. G. Stepanov, J. Catal. 291, 9 (2012).CrossRefGoogle Scholar
  70. 70.
    M. V. Luzgin, M. S. Kazantsev, G. G. Volkova, et al., J. Catal. 277, 72 (2011).CrossRefGoogle Scholar
  71. 71.
    T. Ueda, T. Tatsumi, T. Eguchi, and N. Nakamura, J. Phys. Chem. B 105, 5391 (2001).CrossRefGoogle Scholar
  72. 72.
    J. Yang, M. J. Janik, D. Ma, et al., J. Am. Chem. Soc. 127, 18274 (2005).CrossRefGoogle Scholar
  73. 73.
    H. L. Zhang, A. M. Zheng, H. G. Yu, et al., J. Phys. Chem.C 112, 15765 (2008).CrossRefGoogle Scholar
  74. 74.
    M. V. Luzgin, M. S. Kazantsev, W. Wang, and A. G. Stepanov, J. Phys. Chem. C 113, 19639 (2009).CrossRefGoogle Scholar
  75. 75.
    M. V. Luzgin, V. A. Rogov, V. P. Shmachkova, et al., J. Phys. Chem. C 111, 10624 (2007).CrossRefGoogle Scholar
  76. 76.
    X. L. Pan and X. H. Bao, Chem. Commun. 47, 6271 (2008).CrossRefGoogle Scholar
  77. 77.
    J. J. Spivey and A. Egbebi, Chem. Soc. Rev. 36, 1514 (2007).CrossRefGoogle Scholar
  78. 78.
    V. Subramani and S. K. Gangwal, Energy Fuel 22, 814 (2008).CrossRefGoogle Scholar
  79. 79.
    M. Pijolat and V. Perrichon, Appl. Catal. 13, 321 (1985).CrossRefGoogle Scholar
  80. 80.
    K. Okabe, H. Yamada, T. Hanaoka, et al., Chem. Lett. 30, 904 (2001).CrossRefGoogle Scholar
  81. 81.
    X. Sun and R. G. Robert, Appl. Catal., A 247, 133 (2003).CrossRefGoogle Scholar
  82. 82.
    Y. Liu, K. Murata, M. Inaba, et al., J. Jpn. Pet. Inst. 53, 15318 (2010).CrossRefGoogle Scholar
  83. 83.
    Y. Liu, K. Murata, M. Inaba, et al., Fuel 104, 62 (2013).CrossRefGoogle Scholar
  84. 84.
    J. Bao, Z. Sun, Y. Fu, et al., Top. Catal. 52, 789 (2009).CrossRefGoogle Scholar
  85. 85.
    M. Xiang, D. Li, H. Qi, et al., Fuel 86, 1298 (2007).CrossRefGoogle Scholar
  86. 86.
    Y. Liu, K. Murata, M. Inaba, et al., Catal. Today 164, 308 (2011).CrossRefGoogle Scholar
  87. 87.
    J. Wang, Q. Zhang, and Y. Wang, Catal. Today 171, 257 (2011).CrossRefGoogle Scholar
  88. 88.
    X. San, Y. Zhang, W. Shen, and N. Tsubaki, Energy Fuel 23, 2843 (2009).CrossRefGoogle Scholar
  89. 89.
    Y. Zhang, X. San, N. Tsubaki, et al., Ind. Eng. Chem. Res. 49, 5485 (2010).CrossRefGoogle Scholar
  90. 90.
    X. Li, X. San, Y. Zhang, et al., ChemSusChem 3, 1192 (2010).CrossRefGoogle Scholar
  91. 91.
    G. Yang, X. San, N. Jiang, et al., Catal. Today 164, 425 (2011).CrossRefGoogle Scholar
  92. 92.
    X. San, G. Yang, Y. Zhang, et al., J. Jpn. Pet. Inst. 52, 357 (2009).CrossRefGoogle Scholar
  93. 93.
    N. Tsubaki, M. Ito, and K. Fujimoto, J. Catal. 197, 224 (2001).CrossRefGoogle Scholar
  94. 94.
    Y. Zhang, R. Q. Yang, and N. Tsubaki, Catal. Today 132, 93 (2008).CrossRefGoogle Scholar
  95. 95.
    D. Gao, Y. Feng, H. Yin, et al., Chem. Eng. J. 233, 349 (2013).CrossRefGoogle Scholar
  96. 96.
    D. Wang, G. Yang, Q. Ma, et al., Fuel 109, 54 (2013).CrossRefGoogle Scholar
  97. 97.
    T.-S. Zhao, T. Takemoto, and N. Tsubaki, Catal. Commun. 7, 647 (2006).CrossRefGoogle Scholar
  98. 98.
    P. Lu, G. Yang, Y. Tanaka, and N. Tsubaki, Catal. Today 232, 22 (2014).CrossRefGoogle Scholar
  99. 99.
    L. Lefferts, J. G. van Ommen, and J. R. H. Ross, Appl. Catal. 23, 385 (1986).CrossRefGoogle Scholar
  100. 100.
    J. M. Tatibouet, Appl. Catal., A 148, 213 (1997).CrossRefGoogle Scholar
  101. 101.
    H. C. Liu, P. Cheung, and E. Iglesia, PhysChem-ChemPhys 5, 3795 (2003).Google Scholar
  102. 102.
    H. C. Liu, P. Cheung, and E. Iglesia, J. Catal. 217, 222 (2003).Google Scholar
  103. 103.
    H. C. Liu, P. Cheung, and E. Iglesia, J. Phys. Chem. B 107, 4118 (2003).CrossRefGoogle Scholar
  104. 104.
    H. C. Liu and E. Iglesia, J. Catal. 208, 1 (2002).CrossRefGoogle Scholar
  105. 105.
    P. Cheung, H. Liu, and E. Iglesia, J. Phys. Chem. B 108, 18650 (2004).CrossRefGoogle Scholar
  106. 106.
    X. Huang, Y. Li, Y. Xu, and W. Shen, Catal. Lett. 97, 185 (2004).CrossRefGoogle Scholar
  107. 107.
    S. Wang, T. Ishihara, and Y. Takita, Appl. Catal., A 228, 167 (2002).CrossRefGoogle Scholar
  108. 108.
    G. Liu, Q. Zhang, Y. Han, et al., J. Fuel Chem. Technol. 41, 223 (2013).CrossRefGoogle Scholar
  109. 109.
    N. V. Pavlenko, Yu. N. Kochkin, N. V. Vlasenko, et al., Teor. Eksp. Khim. 36, 111 (2000).Google Scholar
  110. 110.
    N. V. Vlasenko and Yu. N. Kochkin, Russ. J. Appl. Chem. 76, 1615 (2003).CrossRefGoogle Scholar
  111. 111.
    Y. Z. Yuan, H. C. Liu, H. Imoto, et al., J. Catal. 195, 51 (2000).CrossRefGoogle Scholar
  112. 112.
    Y. Yuan and Y. Iwasawa, J. Phys. Chem. B 106, 4441 (2002).CrossRefGoogle Scholar
  113. 113.
    H. C. Liu and E. Iglesia, J. Phys. Chem. B 107, 10840 (2003).CrossRefGoogle Scholar
  114. 114.
    Q. Zhang, Y. Tan, C. Yang, and Y. Han, J. Mol. Catal. A: Chem. 263, 149 (2007).CrossRefGoogle Scholar
  115. 115.
    J. Chen, Z. Tang, C. Xia, et al., CN Patent No. 101182367 (2008); US Patent No. 7560599 (2009).Google Scholar
  116. 116.
    H. Schelling, E. Stroefer, R. Pinkos, et al., CN Patent No. 101048357 (2007).Google Scholar
  117. 117.
    G. P. Hagen and M. J. Spangler, US Patent No. 5959156 (1999).Google Scholar
  118. 118.
    G. P. Hagen and M. J. Spangler, US Patent No. 6392102 (2002).Google Scholar
  119. 119.
    E. Stroefer, H. Schelling, and H. Hasse, DE Patent No. 102005027690 (2006).Google Scholar
  120. 120.
    H. Li, H. Song, L. Chen, and C. Xia, Appl. Catal., B 165, 466 (2015).CrossRefGoogle Scholar
  121. 121.
    H. Zhou, W. Zhu, L. Shi, et al., J. Mol. Catal. A: Chem. 417, 1 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. A. Volnina
    • 1
  • M. A. Kipnis
    • 1
  • S. N. Khadzhiev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations