Numerical Algorithms for Systems with Extramassive Parallelism

Abstract

Difficulties associated with ultrahigh-performance computer systems that will appear in the near future and possible ways of their solution are discussed. Examples of simulating magnetogasdynamics problems are given.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    B. N. Chetverushkin, “Supercomputer technologies: Problems and prospects of the near future,” Vestn. Ross. Akad. Nauk 88 (12), 1083–1089 (2018).

    Google Scholar 

  2. 2

    V. L. Makarov, A. R. Bakhtizin, E. D. Sushko, and G. B. Sushko, “Modeling of social processes on supercomputers: New technologies,” Vestn. Ross. Akad. Nauk, No. 6, 508–518 (2018).

    Google Scholar 

  3. 3

    B. N. Chetverushkin and V. A. Sudakov, “Factor model for the study of complex processes,” Dokl. Math. 100 (3), 514–518 (2019).

    Article  Google Scholar 

  4. 4

    I. I. Volkov, “Cesaro summation methods,” in Encyclopedia of Mathematics (Springer Science + Business Media/Kluwer Academic, Berlin, 2001).

  5. 5

    G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, 1996).

    Google Scholar 

  6. 6

    V. A. Gasilov, P. A. Kuchugov, O. G. Ol’khovskaya, and B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems,” Comput. Math. Math. Phys. 56 (6), 987–995 (2016).

    MathSciNet  Article  Google Scholar 

  7. 7

    T. Kudruashova, Yu. Karamzin, V. Podryga, and S. Polyakov, “Two-scale commuting in multiscale problems of gas dynamics,” Lobachevski J. Math. 39 (9), 123–1249 (2018).

    Google Scholar 

  8. 8

    A. A. Davydov, B. N. Chetverushkin, and E. V. Shil’nikov, “Simulating flows of incompressible and weakly compressible fluids on multicore hybrid computer systems,” Comput. Math. Math. Phys. 50 (12), 2157–2165 (2010).

    MathSciNet  Article  Google Scholar 

  9. 9

    A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1977; Marcel Dekker, New York, 2001).

  10. 10

    B. N. Chetverushkin and M. V. Yakobovskiy, “Numerical algorithms and fault tolerance of hyperexascale computer systems,” Dokl. Math. 95 (1), 7–11 (2017).

    MathSciNet  Article  Google Scholar 

  11. 11

    B. N. Chetverushkin and M. V. Yakobovskiy, Preprint No. 52, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2018).

  12. 12

    F. Cappello, “Fault tolerance in petascale/exascale systems: Current knowledge, challenges, and research opportunities,” Int. J. High Perform. Comput. Appl. 23 (3), 212–226 (2009).

    Article  Google Scholar 

  13. 13

    L. Boltzmann, Lectures on Gas Theory (Dover, 1964).

    Google Scholar 

  14. 14

    C. Cercignani, Theory and Applications of the Boltzmann Equations (Scottish Academy, Edinburgh, 1988).

    Google Scholar 

  15. 15

    B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (MAKS, Moscow, 2004; CIMNE, Barcelona, 2008).

  16. 16

    B. N. Chetverushkin, A. V. Saveliev, and V. I. Saveliev, “A quasi-gasdynamic model for the description of magnetogasdynamic phenomena,” Comput. Math. Math. Phys. 58 (8), 1384–1394 (2018).

    MathSciNet  Article  Google Scholar 

  17. 17

    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  18. 18

    A. A. Zlotnik and B. N. Chetverushkin, “Entropy balance for the one-dimensional hyperbolic quasi-gasdynamic system of equations,” Dokl. Math. 95 (3), 276–281 (2017).

    MathSciNet  Article  Google Scholar 

  19. 19

    A. A. Zlotnik and B. N. Chetverushkin, “On some properties of multidimensional hyperbolic quasi-gasdynamic system of equations,” Russ. J. Math. Phys. 24 (3), 299–309 (2017).

    MathSciNet  Article  Google Scholar 

  20. 20

    B. Chetverushkin, N. D’Ascenzo, A. Saveliev, and V. Saveliev, “Kinetically consistent algorithms for magneto gas dynamics,” Appl. Math. Lett. 72, 75–81 (2017).

    MathSciNet  Article  Google Scholar 

  21. 21

    B. N. Chetverushkin, N. D’Ascenzo, and V. I. Saveliev, “A kinetic model for magnetogasdynamics,” Math. Models Comput. Simul. 9 (5), 544–553 (2017).

    MathSciNet  Article  Google Scholar 

  22. 22

    B. N. Chetverushkin, A. V. Saveliev, and V. I. Saveliev, “Compact quasi-gasdynamic system for high-performance computations,” Comput. Math. Math. Phys. 59 (3), 493–500 (2019).

    MathSciNet  Article  Google Scholar 

  23. 23

    A. E. Lutskii and B. N. Chetverushkin, “Compact version of the quasi-gasdynamic system for modeling a viscous compressible gas,” Differ. Equations 55 (4), 575–580 (2019).

    MathSciNet  Article  Google Scholar 

  24. 24

    B. N. Chetverushkin and A. V. Gulin, “Explicit schemes and numerical simulation using ultrahigh-performance computer systems,” Dokl. Math. 86 (2), 681–683 (2012).

    MathSciNet  Article  Google Scholar 

  25. 25

    B. N. Chetverushkin, N. D’Ascenzo, and V. I. Saveliev, “On an algorithm for solving parabolic and elliptic equations,” Comput. Math. Math. Phys. 55 (8), 1290–1297 (2015).

    MathSciNet  Article  Google Scholar 

  26. 26

    V. M. Goloviznin and B. N. Chetverushkin, “New generation algorithms for computational fluid dynamics,” Comput. Math. Math. Phys. 58 (8), 1217–1225 (2018).

    MathSciNet  Article  Google Scholar 

  27. 27

    S. I. Repin and B. N. Chetverushkin, “Estimates of the difference between approximate solutions of the Cauchy problems for the parabolic diffusion equation and a hyperbolic equation with a small parameter,” Dokl. Math. 88 (1), 417–420 (2013).

    MathSciNet  Article  Google Scholar 

  28. 28

    A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them,” Comput. Math. Math. Phys. 49 (3), 420–446 (2008).

    Article  Google Scholar 

  29. 29

    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Fizmatlit, Moscow, 2006).

  30. 30

    B. N. Chetverushkin and V. I. Saveliev, Preprint No. 79, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2015).

  31. 31

    B. N. Chetverushkin, V. E. Lutskii, and V. P. Osipov, “Conservation laws and a compact quasi-gasdynamic system,” Mat. Model. 31 (12), 21–32 (2019).

    MathSciNet  MATH  Google Scholar 

  32. 32

    B. N. Chetverushkin, N. D’Ascenzo, A. V. Saveliev, and V. I. Saveliev, “Simulation of astrophysical phenomena on the basis of high-performance computations,” Dokl. Math. 95 (1), 68–71 (2017).

    MathSciNet  Article  Google Scholar 

  33. 33

    B. N. Chetverushkin, A. V. Saveliev, and V. I. Saveliev, “Compact quasi-gasdynamic system for high-performance computations,” Comput. Math. Math. Phys. 59 (3), 493–500 (2019).

    MathSciNet  Article  Google Scholar 

  34. 34

    J. K. Fink and L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, Technical Report (1995).

  35. 35

    U. Chia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and multigrid method,” J. Comput. Phys. 48 (3), 387–411 (1982).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. P. Osipov or B. N. Chetverushkin.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osipov, V.P., Chetverushkin, B.N. Numerical Algorithms for Systems with Extramassive Parallelism. Comput. Math. and Math. Phys. 60, 783–794 (2020). https://doi.org/10.1134/S0965542520050115

Download citation

Keywords:

  • high-performance computations
  • extramassive parallelism
  • numerical algorithms
  • quasi-gasdynamic system of equations
  • magnetogasdynamics