Skip to main content
Log in

Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A boundary value problem describing the equilibrium of a two-dimensional linear elastic body with a thin rectilinear elastic inclusion and possible delamination is considered. The stress and strain state of the inclusion is described using the equations of the Euler–Bernoulli beam theory. Delamination means the existence of a crack between the inclusion and the elastic matrix. Nonlinear boundary conditions preventing crack face interpenetration are imposed on the crack faces. As a result, problem with an unknown contact domain is obtained. The problem is solved numerically by applying an iterative algorithm based on the domain decomposition method and an Uzawa-type algorithm for solving variational inequalities. Numerical results illustrating the efficiency of the proposed algorithm are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Khludnev and M. Negri, “Crack on the boundary of a thin elastic inclusion inside an elastic body,” Z. Angew. Math. Mech. 92 (5), 341–354 (2012).

    Article  MATH  Google Scholar 

  2. A. M. Khludnev and G. Leugering, “Delaminated thin elastic inclusion inside elastic bodies,” Math. Mech. Complex Syst. 2 (1), 1–21 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Itou and A. M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies,” Math. Methods Appl. Sci. 39 (17), 4980–4993 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. M. Khludnev and G. Leugering, “On elastic bodies with thin rigid inclusions and cracks,” Math. Methods Appl. Sci. 33 (16), 1955–1967 (2010).

    MathSciNet  MATH  Google Scholar 

  5. V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions,” Z. Angew. Math. Phys. 68, Article 26 (2017).

  6. E. Barbieri and N. M. Pugno, “A computational model for large deformations of composites with a 2D soft matrix and 1D anticracks,” Int. J. Solids Struct. 77, 1–14 (2015).

    Article  Google Scholar 

  7. L. G. S. Leite and W. S. Venturini, “Accurate modeling of rigid and soft inclusions in 2D elastic solids by the boundary element method,” Comput. Struct. 84 (29–30), 1874–1881 (2006).

    Article  Google Scholar 

  8. E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion,” J. Appl. Ind. Math. 10 (2), 264–276 (2016).

    Article  MathSciNet  Google Scholar 

  9. E. M. Rudoy and V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion,” Sib. Electron. Math. Rep. 13, 395–410 (2016).

    MathSciNet  MATH  Google Scholar 

  10. E. M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity,” Z. Angew. Math. Phys. 68, Article 19 (2017).

  11. V. D. Korneev and V. M. Sveshnikov, “Parallel algorithms and domain decomposition techniques for solving three-dimensional boundary value problems on quasi-structured grids,” Numer. Anal. Appl. 9 (2), 141–149 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. M. Laevskii and A. M. Matsokin, “Decomposition methods for the solution of elliptic and parabolic boundary value problems,” Sib. Zh. Vychisl. Mat. 2 (4), 361–372 (1999).

    Google Scholar 

  13. A. V. Rukavishnikov, “Domain decomposition method and numerical analysis of a fluid dynamics problem,” Comput. Math. Math. Phys. 54 (9), 1459–1480 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. M. Sveshnikov, “Domain decomposition method in problems of high-current electronics,” Sib. Zh. Ind. Mat. 18 (2), 124–130 (2015).

    MathSciNet  MATH  Google Scholar 

  15. T. K. Dobroserdova and M. A. Olshanskii, “A finite element solver and energy stable coupling for 3D and 1D fluid models,” Comput. Method. Appl. M 259, 166–176 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Koko, “Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows,” J. Sci. Comput. 26 (2), 195–215 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. P. Astrakhantsev, “Domain decomposition method for the problem of bending heterogeneous plate,” Comput. Math. Math. Phys. 38 (10), 1686–1694 (1998).

    MathSciNet  MATH  Google Scholar 

  18. G. Bayada, J. Sabil, and T. Sassi, “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with nonlocal Coulomb’s friction law,” ESAIM-Math. Model. Numer. 42 (2), 243–262 (2008).

    Article  MATH  Google Scholar 

  19. J. Danek, I. Hlavácek, and J. Nedoma, “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity,” Math. Comput. Simul. 68, 271–300 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. M. Rudoy, “Domain Decomposition method for crack problems with nonpenetration condition,” ESAIMMath. Model. Numer. 50 (4), 995–1009 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. M. Rudoy, N. A. Kazarinov, and V. Yu. Slesarenko, “Numerical simulation of equilibrium of an elastic twolayer structure with a through crack,” Numer. Anal. Appl. 10 (1), 63–73 (2017).

    Article  MathSciNet  Google Scholar 

  22. M. Hintermüller, V. Kovtunenko, and K. Kunisch, “The primal-dual active set method for a crack problem with non-penetration,” IMA J. Appl. Math. 69 (1), 1–26 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Hintermüller, K. Ito, and K. Kunisch, “The primal-dual active set strategy as a semismooth Newton method,” SIAM J. Optim. 13 (2), 865–888 (2003).

    MathSciNet  MATH  Google Scholar 

  24. V. A. Kovtunenko, “Numerical simulation of the non-linear crack problem with nonpenetration,” Math. Methods Appl. Sci. 27 (2), 163–179 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. R. Eugster, Geometric Continuum Mechanics and Induced Beam Theories (Springer, New York, 2015).

    Book  MATH  Google Scholar 

  26. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT, Southampton, 2000).

    Google Scholar 

  27. J. Céa, Optimisation: Théorie Et Algorithmes (Dunod, Paris, 1971).

    MATH  Google Scholar 

  28. E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges,” Comput. Math. Math. Phys. 55 (2), 305–306 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (SIAM, Philadelphia, 1999).

    Book  MATH  Google Scholar 

  30. P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1977).

    Google Scholar 

  31. G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modeling and Numerical Simulation (Oxford University Press, Oxford, 2007).

    MATH  Google Scholar 

  32. A. M. Khludnev and V. V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler–Bernoulli inclusions,” Math. Mech. Solids 22 (11), 2180–2195 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kazarinov.

Additional information

Original Russian Text © N.A. Kazarinov, E.M. Rudoy, V.Yu. Slesarenko, V.V. Shcherbakov, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 5, pp. 790–805.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazarinov, N.A., Rudoy, E.M., Slesarenko, V.Y. et al. Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion. Comput. Math. and Math. Phys. 58, 761–774 (2018). https://doi.org/10.1134/S0965542518050111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518050111

Keywords

Navigation